2026/01/18 08:00 1/19 N2 - Photometry of open star clusters

N2 - Photometry of open star clusters

Remark: This article describes the modern data reduction and data analysis for the N2 experiment
using an almost fully automated Python script for the reduction of flatfields and dark frames as well as
the stacking and alignment of the star cluster images. The classical version, where the displacements
are measured by hand and manually entered into a routine, is described in the article Photometry of
an open star cluster (classical) (only in German). Alternatively, there is also a semi-automatic version
based on GDL: Photometry of an open star cluster (GDL).

Task

Take photometry of two open star cluster (in two different filters) and create the color-magnitude
diagrams for these clusters. The main task is the determination of the cluster ages. Look for suitable
clusters in advance of the observation, e.g. at Simbad - a help page for the parameter searches can
be found here.

Criteria to be fulfilled for the clusters are:

e High number of stars, at least 100 stars should be inside the cluster

e The star density should not be so dense that the diffraction discs of the stars merge with each
other

e Field of view of the camera with the telescope covers most of the cluster

e Size of the cluster is not too small

* No strong brightness contrasts between the individual stars

Good example Bad examples

Observation

Night observations at the OST of the University of Potsdam (alternatively also at the 70cm telescope
of the AIP) are required. Please refer to the checklist for night observations for preparation.

OST Wiki - https://141.89.178.218/wiki/

https://141.89.178.218/wiki/doku.php?id=de:praktikum:photometrie-klassisch
https://141.89.178.218/wiki/doku.php?id=de:praktikum:photometrie-klassisch
https://141.89.178.218/wiki/doku.php?id=en:praktikum:photometrie
http://simbad.u-strasbg.fr/simbad/
https://141.89.178.218/wiki/doku.php?id=en:etc:simbad
https://141.89.178.218/wiki/doku.php?id=en:ost:ccds:grunddaten#basic_data
https://141.89.178.218/wiki/lib/exe/detail.php?id=en%3Apraktikum%3Aphotometrie_python&media=en:labcourse:n2:ngc7789_dss2.jpeg
https://141.89.178.218/wiki/lib/exe/detail.php?id=en%3Apraktikum%3Aphotometrie_python&media=en:labcourse:n2:ngc2281_dss2.jpeg
https://141.89.178.218/wiki/lib/exe/detail.php?id=en%3Apraktikum%3Aphotometrie_python&media=en:labcourse:n2:m34_dss2.jpeg

Last update: 2025/07/31

10:08 en:praktikum:photometrie_python https://141.89.178.218/wiki/doku.php?id=en:praktikum:photometrie_python

For the data reduction, flatfields and darks must be taken in addition to the actual images of the star
clusters. Bias images (with zero exposure time) are not necessary, if for each set of star cluster
images and flatfields also darks with the same exposure times are taken. At the OST, the flatfields can
be taken with a flat field panel after observing the star clusters. If observing at the AIP, it is
recommended to take the flatfields already at dusk (or against a white evenly illuminated wall). In this
case, bias images are also required and should be taken with the cover closed. In any case, in
absolute darkness and with the covers closed, the dark frames should be acquired. To minimize noise,
each set of darks and flats should consist of at least 30 individual exposures.

After darkness has fallen, the images of the star clusters are taken. To get a sufficient number of
counts also from fainter stars, the exposures should be long enough. Depending on the camera and
the observed object the time span for single images can be between 20 seconds and several minutes.
Especially if brighter objects are in the field of view or if the accuracy of the tracking is insufficient, it
is useful to take several exposures and add them up later. With the typical seeing in Potsdam, the
currently used cameras can be operated with 2x2-Binning or 3x3-Binning to further increase the
signal to noise ratio. In any case, a total exposure time of at least 40 minutes should be achieved per
filter.

Data reduction

Preparations
Get an overview - View pictures

The first thing to do is to log in to the laboratory computer. The next step is to copy the observation
data (FIT files), including flatfield and bias/darkframe images from the directory ~/data/<date> to
your own directory ~/data_reduction/. There are several tools to view the two-dimensional CCD
images (data arrays) stored in the FIT format. For example by means of ds9:

ds9 filename.fit

opens the image filename. fit with ds9. After opening an image, you can vary the brightness and
contrast by moving the cursor while holding down the right mouse button. Further options (zoom,
false color display, rotate, mirroring etc.) can be accessed via buttons. The coordinates of the current
cursor position are displayed in the upper left corner. It is also possible to open several images at
once (buttons Frame -» new frame, then open another file with File - open). With the blink option
(buttons: Frame - b1link) one can compare several images easily.

Alternatively, all images can be opened at the same time. For this purpose
ds9 *.fit

(but this is not suitable for a large number of files). In ds9 the frames can be viewed as above or each
frame can be viewed individually one after the other (button Frame -» Single Frame). You can
switch between the frames by pressing the tab key.

The usable frames are to be selected for further processing. For example, the stars should be seen

https://141.89.178.218/wiki/ Printed on 2026/01/18 08:00

https://141.89.178.218/wiki/doku.php?id=en:ost:ccds:ccdops#binning
https://141.89.178.218/wiki/doku.php?id=en:ost:ccds:ccdops#binning
https://141.89.178.218/wiki/doku.php?id=en:praktikum:zugang

2026/01/18 08:00 3/19 N2 - Photometry of open star clusters

as round discs. Images with oval-shaped stars are not to be used.

Install the pipeline

Some modules from the OST photometry pipeline are required for the data reduction and analysis.
Python modules should always be installed in a virtual environment to reduce dependency issues. A
virtual environment can be created using

mkvirtualenv ost photometry

By doing so, we have named the virtual environment ost_photometry. The fact that we are in the
virtual environment is indicated by the string '(ost_photometry)', which now precedes each terminal
line. To leave the virtual environment, simply type

deactivate
If you want to reconnect, you can do so by typing
workon ost photometry

This is also necessary if you reconnect to columba, e.g. after a break, and want to continue the data
analysis.

The OST photometry pipeline can then be installed in the terminal using pip as follows
pip install ost photometry

All necessary dependencies are also installed in this way.

Reduction pipeline: darkframes, flatfields, and image stacking

In order to cope with a larger amount of data, there is a Python routine that performs the corrections
for darkframe and flatfield per filter, then adds up the images per filter and aligns them to each other.
The routine does not perform any quality control of the images, so unusable observations must be
sorted out beforehand, otherwise alignment problems may occur.

Copy the Python script 1 _add images.py from the directory ~/scripts/n2/ into your local
working directory. After that you should open it with a text editor of your choice to adjust the paths
for the images. To be able to read and verify a larger amount of images, the program expects a
separation of the data into different subdirectories (variables: bias, darks, flats, images). There
should be one directory each for the images of the star cluster, the flatfields, and the dark frames. A
possible directory structure could be:

/bias/
/darks/
/flats/
/images/

OST Wiki - https://141.89.178.218/wiki/

Last update: 2025/07/31

10:08 en:praktikum:photometrie_python https://141.89.178.218/wiki/doku.php?id=en:praktikum:photometrie_python

The Python script automatically detects the filters and exposure times used. Based on this, it arranges
and classifies the files automatically without any further interaction. If you are sure that all FIT-
Header keywords are set correctly, you can try to put all files into one directory. In this case only the
path rawfiles must be set in the script. Otherwise, the paths to the subfolders for the flats, darks,
etc. must be specified. Hence either bias, darks, flats, and images musst be specified or only
raw files.

Configuration section of 1 add images.py:

HHHBHIHH RS Individual folders ######HHHHHHHHHHH ARSI
Path to the bias -- If set to '?', bias exposures are not used.
bias: str = '?'

Path to the darks
darks: str = '?'

Path to the flats
flats: str = '?'

Path to the images
images: str = '7?'

HEHARSHAR AR Simple folder structure ########H#HAHHHAHHHAHHHAHHHH
raw files: str = '?'

Once the path information and the name of the star cluster have been specified, the script can be
executed with

python 1 add images.py

The results are saved in a new subdirectory called output.

Data analysis

It is recommended not to execute all the following steps on the command line of Python, but to write
a small script analysis.py (can also be named completely different). To do this, open the desired
program file with a text editor (in the following case Kate):

kate analysis.py &

At the beginning of the Python script we first include the required modules. In our case these are
Numpy, some Astropy modules, Astroquery, and some parts of our OST library:

import numpy as np
from astropy.coordinates import SkyCoord, matching

import astropy.units as u
from astropy.table import Table

https://141.89.178.218/wiki/ Printed on 2026/01/18 08:00

2026/01/18 08:00 5/19 N2 - Photometry of open star clusters

from astroquery.vizier import Vizier

from ost photometry.analyze.analyze import main_extract
from ost photometry.analyze.plots import starmap, scatter
from ost photometry.utilities import (

find wcs astrometry,

Image,
)
from ost photometry.analyze.utilities import (

clear duplicates,

)

import warnings
warnings.filterwarnings('ignore')

The last two lines disable some warnings that unnecessarily clutter the console output.

Defining some variables

Next, some variables should be defined. These should be at least the name of the cluster (name), the
directory where the results should be stored (out path) and the paths (V_path and B_path) to the
two images of the cluster in the considered filters (here V and B) obtained from the reduction pipeline.

Cluster name (recognizable by Simbad/Vizier)
name = 'NGC7789'

Directory to save the data
out path='output/'

Images
V path = 'output/combined filter V.fit'
B path = 'output/combined filter B.fit'

Note: The variable names given here and in the following are only examples and can be replaced by
any other name.

Note: If the images are not in a subdirectory of the current directory, the path can also refer to the
next higher level by using .. /.

Reading in the images

We open the FIT files with image data by means of the image function provided by the OST library.
This has the advantage that we do not have to worry about the details of the read-in process, and at
the same time we have a Python object for each image, which we can use to store some of the results
obtained in the following steps. The image function has the following arguments: 1. index of the
image (can be set to 0), 2. filter name, 3. path to the image file and 4. path to the output directory:

Load images

OST Wiki - https://141.89.178.218/wiki/

Last update: 2025/07/31

10:08 en:praktikum:photometrie_python https://141.89.178.218/wiki/doku.php?id=en:praktikum:photometrie_python

V_image
B image

Image(0, 'V', V _path, out path)
Image(0, 'B', B path, out path)

World Coordinate System

The images created by the OST are usually delivered without a so-called WCS. WCS stands for World

Coordinate System and allows to assign sky coordinates to each pixel in the image. In ds9 these

coordinates will be displayed in the coordinates window of ds9 when pointing with the mouse pointer

on certain pixels or objects. This is very helpful if you want to compare the positions of stars in your

own image with those in star catalogs. This could be quite helpful for the calibration of the stellar
=

-

magnitudes later on

We will use the function find wcs astrometry to determine the WCS:

Find the WCS solution for the images
find wcs astrometry(V_image)
find wcs astrometry(B image)

When a WCS solution is found,
WCS solution found :)

is printed in green on the command line.

Localization of the stars

Finding the stars

The identification of the stars in the two images is performed using the main_extract function. This
function takes as the first argument the image object. As an optional argument, the extraction
method can be selected (photometry). Here we specify 'APER’, and thus select aperture
photometry, where the flux of the individual objects and the associated sky backgrounds is read out
within fixed apertures (here circular and ring-shaped, respectively). To specify these apertures, we
have to give a radius for the circular object aperture (rstars) and two radii for the annular
background aperture (rbg_in and rbg_out). In previous observations, the respective values were 4,
7, and 10, respectively. The radii are in arc seconds.

Extract objects
main_extract(
V_image,
photometry extraction method='APER',
radius aperture=4.,
inner annulus radius=7.,
outer annulus radius=10.,
)

main extract(

https://141.89.178.218/wiki/ Printed on 2026/01/18 08:00

2026/01/18 08:00 7/19 N2 - Photometry of open star clusters

B image,

photometry extraction method='APER',
radius aperture=4.,

inner _annulus_ radius=7.,

outer annulus radius=10.

In addition to the star coordinates (in pixels), main extract also automatically stores all extracted
fluxes in the image objects.

Check identified stars

The function main_extract has the nice feature that it marks the identified stars on a so called
“starmap”. This can be used to check if enough stars were identified. The starmaps are located in the
output directory (variable: out path) and there in the subdirectory starmaps. If not enough stars
have been identified or noise has been falsely identified as stars, the sigma parameter should be
adjusted in the call of main_extract.

Preparing the extraction results

For the subsequent steps in the tutorial we need the extracted fluxes and the star position preferably
in the form of Astropy tables. These tables can be easily obtained from the image objects:

Get table
photo V = V_image.photometry
photo B = B _image.photometry

From these, in turn, the specific star positions (in pixels) can be easily extracted:

x
<
|

= photo V['x fit']
y V = photo V['y fit']

x B = photo B['x fit']
= photo B['y fit']

<
o
|

Cross correlation and sorting of results

Next we have to identified those stars that are present in both filters. This is done using the
astropy.coordinates package, more precisely using the correlation functions for datasets
provided by this package. Since these functions work on the basis of celestial coordinates rather than
pixel coordinates, we need to convert our previously determined pixel coordinates into a suitable
coordinate system. For this purpose it is convenient that we have determined the WCS before.

First, we create SkyCoord objects for each of the datasets from the two filters. These objects, once
defined, allow us to output the coordinates in a variety of already predefined coordinate systems.
Furthermore, and even more convenient, these objects are also accepted as arguments by a number
of Astropy functions and classes. For this reason, you usually don't need to worry about which

OST Wiki - https://141.89.178.218/wiki/

Last update: 2025/07/31

10:08 en:praktikum:photometrie_python https://141.89.178.218/wiki/doku.php?id=en:praktikum:photometrie_python

coordinate system you are working in, since this is all handled internally by Astropy. We define our
SkyCoord objects using the option . from pixel(), which allows us to define them directly based
on the pixel coordinates and the previously determined WCS (which we can take from the image
object).

Create SkyCoord objects
coords V = SkyCoord.from pixel(x V, y V,
coords B = SkyCoord.from pixel(x B, y B

image.wcs)
image.wcs)

V_
» B_
These two SkyCoord objects can then be correlated with each other by means of the function
search_around sky. In addition to the two SkyCoord objects this function needs as third
argument the allowed tolerance in the coordinates (below which two objects from both datasets are

still recognized as the same). In our case we choose a generous 2 arc seconds. The unit is defined
here by the astropy.units package that we loaded above using the abbreviation u.

Correlate results from both images
id V, id B, d2, = matching.search around sky(coords V, coords B,
2.*u.arcsec)

The successfully mapped stars get one entry each in id V, id B, and d2. These two first lists (more
precisely Numpy arrays) contain the index values that these stars had in the original unsorted
datasets. This means that we can use these index values to sort the original tables with the fluxes
and star positions in such a way that they only contain stars that were detected in both images and
that the order of the stars in both data sets is the same. This assignment is essential for the further
procedure.

Before this can happen, however, potential multiple identifications must be sorted out. For example, it
is possible that matching.search around sky() assigns object 3 from coords_V to both object
2 and object 4 from coords B. These duplicates are removed with

Identify and remove duplicate indices
id V, d2, id B = clear duplicates(
id Vv,
dz,
id B,
)
id B, , id V = clear _duplicates(
id B,
dz,
id Vv,

The photometric tables can then be sorted by inserting the index value arrays into the corresponding
tables. In this way, we simultaneously select and sort the stars identified in the two images:

Sort table with extraction results and SkyCoord object
photo V sort = photo V[id V]
photo B sort = photo B[id B]

coords objs = coords V[id V]

https://141.89.178.218/wiki/ Printed on 2026/01/18 08:00

2026/01/18 08:00 9/19 N2 - Photometry of open star clusters

With the last line above we have also sorted one (which one doesn't matter) of the SkyCoord objects.
This will be useful in the next but one step.

Conversion of fluxes into magnitudes

Since in the following we work in magnitudes, the fluxes must be converted accordingly. The
conversion can be done immediately on the basis of the tables extracted before (the fluxes are stored
in the column flux_fit). The calculated magnitudes can also be added to the tables as a new
column:

Calculate magnitudes
photo V _sort['mag"'] -2.5 * np.loglO(photo V sort['flux fit'])
photo B sort['mag’] -2.5 * np.loglo(photo B sort['flux fit'])

Note that the magnitudes are determined only to an additive constant as long as no calibration has
been performed.

Calibration

The magnitudes are so far determined only up to a constant (the so-called Zeropoint). Calibration
poses a significant problem without access to a database of comparison stars. Fortunately, the
astronomical community offers such databases that we can use. We will use the VizieR database of
the Centre de Données astronomiques de Strasbourg or obtain our calibration data from there.
To acces this database we will use the astroquery package and from it the Vizier module.

Download calibration data

First we define the catalog we want to access. In our case, we use the APASS catalog, which runs
under ID. I1/336/apass9. Furthermore we define the columns we need. We limit ourselves here to
the columns we really need to keep the download time short. The column names are partly catalog
specific, so for another catalog other column names might have to be used.

Get calibration from Vizier
catalog = 'II/336/apass9’
columns = ['RAJ2000', 'DEJ2000', "Bmag", "Vmag", "e Bmag", "e Vmag"]

Then we define the Vizier object. We pass the catalog ID and the column definition to it and set the
so-called row limit to 1076. The latter limits the table to be downloaded to 10”6 rows and thus
the download volume. We do this to not run into a server timeout during the download.

v = Vizier(columns=columns, row limit=1e6, catalog=catalog)

In the next step we can perform the actual download. For this purpose we use the function

.query region. We have to pass to it the coordinates and the size of the sky region to be queried.
Fortunately, both are already known. We know the coordinates from the FIT headers of the star
cluster images and the radius of the region is simply the field of view, which we already calculated

OST Wiki - https://141.89.178.218/wiki/

Iie(lfégpdate: 2025/07/31 en:praktikum:photometrie_python https://141.89.178.218/wiki/doku.php?id=en:praktikum:photometrie_python

above. Both values can be taken from the V_image object.

calib tbl = v.query region(V_image.coordinates image center,
radius=V_image.field of view x*u.arcmin)[0]

The table calib tb1l now comprise all objects contained in the APASS catalog that are in our field of
view with their B and V magnitudes.

Task: Restrict the downloaded APASS catalog to all objects with V magnitudes in the 10
to 15 mag range. This will ensure that potentially overexposed as well as underexposed
| stars in our images are not used for the calibration.
Note: To accomplish this task, it might be helpful to learn a little about boolean masks,
comparison operation, and boolean logic.

Alternatively to the APASS catalog, the 'Fourth U.S. Naval Observatory CCD Astrograph Catalog'
(UCACA4) can be used for calibration, which has the ID I/322A/.

Cross correlation with the extracted data

The downloaded catalog must now be correlated with the star coordinates extracted above. For this
purpose we create once again a SkyCoord object. This time for the calibration stars. Unlike above,
we construct the SkyCoord object this time directly from the right ascension and declination
coordinates, which we can take from the table calib tbl. The right ascension values can be found
in the column RAJ2000, whereas the declination values are in the column DEJ2000. Furthermore, the
units for the coordinates must be specified. In our case these are degrees (u.deg). As the last
argument (frame) the coordinate system should be specified. In our case we have to specify icrs.

Set up SkyCoord object with position of the calibration objects
coord calib = SkyCoord(

calib tbl['RAJ2000'].data,

calib tbl['DEJ2000'].data,

unit=(u.deg, u.deq),

frame="icrs"

)

As above, we correlate the calibration data with our results using the search around sky function
from the matching module of Astropy. As arguments we pass the just defined SkyCoord object
for the calibration stars, the SkyCoord object for the stars we found in both filters (coords objs)
and the maximum distance between stars in both datasets (below which they are still recognized as
the same object).

Correlate extracted object position with calibration table
ind fit, ind 1it, , = matching.search around sky(

coords objs,

coord calib,

https://141.89.178.218/wiki/ Printed on 2026/01/18 08:00

https://jakevdp.github.io/PythonDataScienceHandbook/02.06-boolean-arrays-and-masks.html
https://jakevdp.github.io/PythonDataScienceHandbook/02.06-boolean-arrays-and-masks.html

2026/01/18 08:00 11/19 N2 - Photometry of open star clusters

2.*u.arcsec,

)
As also described above, the duplicates must now be sorted out:

Identify and remove duplicate indexes

ind fit, d2, ind lit = clear duplicates(
ind fit,
d2,
ind 1it,

)

ind lit, , ind fit = clear duplicates(
ind 1it,
d2,
ind fit,

In this way, we again obtain index values that we can use to select the calibration stars both from the
datasets for the two filters and from the downloaded catalog:

Select data of the calibration stars
photo V sort calib = photo V sort[ind fit]
photo B sort calib = photo B sort[ind fit]

Select literature data of the calibration stars
calib tbl sort = calib tbl[ind lit]

Magnitude calibration

Now we are able to perform the actual calibration of the magnitudes. We calculate the so-called
zeropoint by subtracting our extracted magnitudes from the magnitudes in the downloaded catalog
for the calibration stars in each of the two filters. Then we can use the function .ma.median from the
Numpy module to compute the median over all calibration stars:

Calculate zero points
ZP V = np.ma.median(calib tbl sort['Vmag'] - photo V sort calib['mag'])
ZP B = np.ma.median(calib tbl sort['Bmag'] - photo B sort calib['mag'])

Afterwards the calculated zeropoints have to be added to the magnitudes of the stars in the tables
photo V sort and photo B sort. To guarantee reproducibility, the calibrated magnitudes should
be added to the tables in a separate column:

Calibrate magnitudes
photo V sort['mag cali']
photo B sort['mag cali']

photo V sort['mag'] + ZP_V
photo B sort['mag'] + ZP B

Checking the calibration stars

OST Wiki - https://141.89.178.218/wiki/

Iie(lfégpdate: 2025/07/31 en:praktikum:photometrie_python https://141.89.178.218/wiki/doku.php?id=en:praktikum:photometrie_python

One way to check the validity of the calibration stars is to display them on a starmap (similar to what
the main extract above does automatically). But now we want to display the downloaded star
positions as well as the stars that were actually used for the calibration later on. For this purpose the
OST library offers a suitable function (starmap) which can create such plots. This function can be
loaded via

from ost photometry.analyze.plots import starmap

Since this function expects as input an astropy table, with the data to be plotted, we must first create
it before we can plot the starmap. The position of the calibration stars are not yet available in pixel
coordinates, because we got this information from the Simbad or Vizier database. Therefore, we need
to generate these. At this point it is convenient that we have previously created a SkyCoord object
for these stars. Using .to _pixel() and specifying the WCS of the image, we can easily generate
pixel coordinates:

Calculate object positions in pixel coordinates
x cali, y cali = coord calib.to pixel(V_image.wcs)

Then we can use this data to create the new Astropy table:

tbl xy cali all = Table(
names=["'id"', 'xcentroid', 'ycentroid'],
data=[np.arange(0,len(y cali)), x cali, y cali]

)

We now repeat the whole process for the SkyCoord object, which contains only the stars that were
both in the database and identified on the two images (both filters) of the cluster:

x cali s, y cali s = coords objs.to pixel(V_image.wcs)

tbl xy cali s = Table(
names=["'id', 'xcentroid', 'ycentroid'],
data=[np.arange(0,len(y cali s)), x cali s, y cali s]
)

After that we have everything ready and can plot the starmap:

starmap(
out path,
V _image.get data(),
e
tbl xy cali all,
label="'Downloaded calibration stars',
tbl 2=tbl xy cali s,
label 2='Identified calibration stars’,
rts='calibration',

Here, the first argument is our output directory, the second argument is the actual image (as a
Numpy array), the third argument is the filter label, the fourth argument is the first table, label is

https://141.89.178.218/wiki/ Printed on 2026/01/18 08:00

2026/01/18 08:00 13/19 N2 - Photometry of open star clusters

the label to the first dataset, tbl 2 is the second table, label 2 is the label to the second dataset,
and rts is a description of the plot.

Alternatively, you can also create the starmap directly with the help of pyplot from the
matplotlib module. This is not much more complex but offers more possibilities to customize the
plot. You load pyplot by means of:

import matplotlib.pyplot as plt
The plot window is created via

fig = plt.figure(figsize=(20,9))
Then the actual image can be loaded:

plt.imshow(V image, origin='lower")

image is the actual image data and origin=1lower makes sure that the overplotting of the pixel
coordinates works. Afterwards the symbols which mark the star position can be plotted:

plt.scatter(x positions, y positions)
X_positions andy positions are the x andy star positions in pixels. .scatter offers a variety
of configuration options such as the selection of the symbol, color, line width, and much much more.
Please refer to the various documentation and tutorials on the Internet. Also regarding labels, titles,
legends, and axis labels more than enough information can be found online. The plot can be saved via

plt.savefig(filename)

Here, filename is the file name or the path to the file. Alternatively, the plot can also be displayed
directly via

plt.show()

However, in this case the backend may need to be changed before plt.show() is called:
plt.switch backend('TkAgg')

At the end of the plot it should be closed by means of:

plt.close()

Saving the results

Once the calibration is done, we should still save our extracted and calibrated magnitudes. Since the
tables photo V sort and photo B sort contain some data that we do not need for the creation of
the CMD and we do not want to save them for the sake of conciseness, we create a new table that
contains only the relevant data. The new table can be easily created using Table(). Then we add to
this table the columns from the tables photo V _sort and photo B sort that are relevant for us:

OST Wiki - https://141.89.178.218/wiki/

Iie(lfégpdate: 2025/07/31 en:praktikum:photometrie_python https://141.89.178.218/wiki/doku.php?id=en:praktikum:photometrie_python

Create new table for the CMD

results = Table()

results['id'] = photo V sort['id']
results['x'] = photo V sort['x fit']
results['y'] = photo V sort['y fit']
results['B [mag]"'] photo B sort['mag cali']
results['V [mag]"'] photo V sort['mag cali']

If the new table is filled, Astropy allows to save this table very comfortably with the command
.write. As first argument we have to specify the path or file name under which the table should be
saved. Furthermore we specify the format (we choose ascii) and set the parameter overwrite to
True, so that if we run the script several times the current data will always be written to the file.

Save table
results.write(out path + '‘cmd.dat', format='ascii', overwrite=True)

Postprocessing

If you look at the images of the star clusters you will notice that the star clusters usually occupy only
a part of the field of view. Mostly this area will be between 30% and 60% of the field of view. So we
probably observe beside the star clusters a number of other stars, so called field stars, which actually
do not belong to our star cluster. Generally there will also be some stars between us and the star
cluster. Since these stars most likely did not form together with the star cluster, these stars will spoil
our results concerning the age determination or make them more difficult to interpret.

Task: Try to limit the selection of stars to the most probable star cluster members. You
have two possibilities, which can be used alternatively or additively.

1. Limit the selection of stars to e.g. 10 arc minutes around the central coordinates of
the star cluster.
/1 2. Download the data from the Gaia archive (catalog ID: I/350/gaiaedr3) as
-, demonstrated in the calibration above. From this data set, look in particular at the
columns relating to the proper motion of the stars. Use this data to select the
cluster members.

Note: In any case, it is helpful to create starmaps (as described in the section “Checking
the Calibration Stars”) or similar plots that will help you to evaluate the results.

CMDs

Plot apparent CMD

For the creation of the CMD a Python script is available, in which only a few paths and a few further

https://141.89.178.218/wiki/ Printed on 2026/01/18 08:00

2026/01/18 08:00 15/19 N2 - Photometry of open star clusters

parameters have to be adjusted. This script also offers the possibility to plot isochrones. We will go
into this in more detail below.

First you should copy the corresponding script 3 _plot cmd.py from the directory ~/scripts/n2/
into the local working directory. Subsequently, the name of the star cluster (nameOfStarcluster)
should be set and the path to the file saved above with the magnitudes should be added
(CMDFileName).

The script 3 _plot _cmd.py can be called as follows
python 3 plot cmd.py

This script creates a PDF file with the apparent CMD. The axes scaling is done automatically. Since
this is not always ideal due to outliers, the plot range should be adjusted via the variables
x_Range apparent and y Range apparent. The quotation marks are simply to be replaced by
the axis boundaries, such as x_Range apparent = [-0.5, 2].

e 1 R R B R
HH#H#H# Configuration: modify the file in this section

HtH##

L

Name of the star cluster
nameOfStarcluster = "NGC7789"

Name of CMD data file
CMDFileName = "output/cmd.dat"

it

Plot parameter

#

x Range=[xRangeMin:xRangeMax] & y Range=[yRangeMin:yRangeMax]

-> x and y range to plot (change according to your data)

-> The plot range is automatically adjusted, if range is set to ""
Apparent CMD:

x Range apparent=["",""]

y Range apparent=["",
Absolute CMD:

X_Range absolute=["",6""]
y Range absolute=["",6""]

Note: In addition to these settings, there are a number of other configuration options, but we will not
discuss them further at this point.

Reddening & absolute magnitudes

When comparing your apparent CMD to the literature, you will notice that the main sequence is likely
to be shifted. This occurs due to the interstellar medium which is spread between the stars of our

OST Wiki - https://141.89.178.218/wiki/

Last update: 2025/07/31

10:08 en:praktikum:photometrie_python https://141.89.178.218/wiki/doku.php?id=en:praktikum:photometrie_python

Galaxy. Like all other baryonic matter, it can be excited by light. It will reemit this energy usually at a
longer wavelength. Therefore, this effect is called reddening (do not confuse it with redshift):

$(B-V)_{0} = (B-V) - E_{(B-V)}$
$V_{0} =V-A_{V}$

The reddening is mathematically described by the color excess $E_{(B-V)}$, the difference between
the measured, uncorrected color $(B-V)$ (measured here) and the unreddened, “original” value $(B-
V) {0}$. The redding effects the magnitude, too. The correction term is $A {V}$, which relates to
$E_{(B-V)}$ by the reddening parameter R_V:

$A_{V} =R V\cdot E_{(B-V)}$

In the solar neighborhood R_V usually is set to 3.1 (Seaton 1979). Find an appropriate value for
$E_{(B-V)}$ for the line of sight to the observed cluster, i.e. in VizieR or in Simbad by means of the
papers that are associated with your object. In any case, refer to the used catalog or paper in your
report! Apply this correction to your data and plot the CMD again.

Finally the apparent magnitudes should be converted into absolute magnitudes, so that later a
comparison with isochrons is possible. For this, the corresponding distance modulus or the distance of
the star cluster must be looked up in papers (publications) and the corresponding correction must be
applied.

Absolute CMD plot

After the $E_{(B-V)}$ and the distance or distance modulus for the corresponding star cluster have
been figured out, these can be entered at the corresponding variables in the script 3 plot cmd.py.
m_Mis the distance modulus. The remaining variables should be self-explanatory. If eitherm M or
distance is given, the script will create the absolute CMD as well as the apparent CMD. If it is
necessary to adjust R_V this can also be done.

EB-V of the cluster

eB V = 0,
RV
RV = 3.1

Give either distance modulus of the cluster or the distance in kpc
mM="'?"

distance = '?'

Note: In addition to these settings, there are a number of other configuration options, but we will not
discuss them further at this point.

Plot isochrones

Some isochrones are already included in the OST library, although by no means all of them and some

https://141.89.178.218/wiki/ Printed on 2026/01/18 08:00

http://adsabs.harvard.edu/abs/1979MNRAS.187P..73S
http://viz-old.u-strasbg.fr/viz-bin/VizieR-2

2026/01/18 08:00 17/19 N2 - Photometry of open star clusters

of them are incomplete. Therefore, especially if no suitable isochrones were found, you should search
for further ones on your own. Stellar evolution calculations are performed by a number of working
groups and researchers. The resulting isochrones are usually made available to the scientific
community via web portals and can be downloaded from there.

Unfortunately, there is no uniform format for isochrones, which means that the script

(3_plot _cmd.py) must be instructed to read these for each new “isochrone type” or each new
“isochrone source”. This is done using files in the so-called YAML format, which store the necessary
configuration. For the isochrones contained in the OST library these configuration files can already be
found in the script directory. An empty template file is also available there. In the script the selection
of the respective “isochronous source” is done via the variable isochrone configuration file
Here the name or the path to the respective YAML file has to be entered.

Do not display isochrones

un

If no isochrones are to be displayed isochrone configuration file must be set to

For the PARCEC isochrones the configuration file looks like this:

PARCES isochrones (CMD 3.6)

Files

isochrones:

‘~/isochrone database/parsec _iso/3p6/solar 0Op2Gyr/iso parsec 0p2Gyr.dat'
isochrones:

'~/isochrone database/parsec iso/3p6/solar Op5Gyr/iso parsec Op5Gyr.dat'
isochrones:

'~/isochrone database/parsec iso/3p6/solar 1Gyr/iso parsec 1lGyr.dat'
Type

isochrone_ type: 'file'

Type of the filter used in CMD plots
Format:
‘filter name':
- column type (single or color)
- ID of the filter if the column type is color, e.g., if the filter

R and the color is V-R, the filter ID would be 1. If column-type

- -
H HH OO HF 0 HHHHEHR

single, the ID will be 0.
- name of the second filter, in the example above it would be V. If
column-type is single, the name can be set to '-'.
isochrone column type:
"‘U':
- 'single’
-0

OST Wiki - https://141.89.178.218/wiki/

http://stev.oapd.inaf.it/cgi-bin/cmd

Last update: 2025/07/31

10:08 en:praktikum:photometrie_python https://141.89.178.218/wiki/doku.php?id=en:praktikum:photometrie_python
1 B 1 :
- 'single’
-0
- 1 - 1
1 V 1 :
‘single’
-0
- 1 - 1
1 R 1
- 'single’
-0

ID of the columns in the isochrone data file containing the magnitudes
and the age
isochrone column:

‘U': 29
‘B': 30
'V 31
'‘R': 32
"AGE': 3

Keyword to identify a new isochrone
isochrone keyword: '# Zini'

Logarithmic age
isochrone_log age: true

Plot legend for isochrones?
isochrone legend: true

isochrones points to the file with the isochrones. Here isochrone type is set to file, which tells
the script that all isochrones can be found in one file. An alternative is directory. In this case the
script expects the isochrones to be found in individual files in a specific directory and that the variable
isochrones points to that directory. With isochrone_column you can specify the desired column
numbers. isochrone column_type specifies whether the magnitudes are given as colors or as
“single” magnitudes. See the format description above for more information. The basic options here
are color and single. With isochrone log age you can specify whether the values in the age
column are logarithmized or not. You can choose between True or False. If the isochrones are all in
one file, the script needs a keyword to recognize when an isochrone ends and the next one begins.
This can be specified with the variable isochrone keyword. Finally, you can decide if you want to
plot a legend for the isochrones. This is controlled by the variable isochrone legend.

Tip: Usually there are isochrones from one source in different time resolutions and for different
metallicities. These are then usually found in other files or folders. So it may be worthwhile to look in
the database and adjust the entry for isochrones.

Note: Some additional information about the individual variables can be found directly in the YAML
template.

https://141.89.178.218/wiki/ Printed on 2026/01/18 08:00

2026/01/18 08:00 19/19 N2 - Photometry of open star clusters

Report

A usual report is to be handed in. See the general overview about the required structure and content
here.

For this observation, the theoretical overview in the report should describe open and globular cluster
with emphasis on the observed kind, and their differences to other accumulations and groups of stars.
Explain Hertzsprung-Russell diagrams (HRD) and the color-magnitude diagrams (CMD) and the
difference between them. Shortly describe the evolution of stars of different masses in the context of
a HRD. Explain the concepts of isochrones and the turn-off point and how one estimates the age of a
cluster using them.

In the methods section describe the observations and the data reduction, highlight points that deviate
from general description in here and list all the parameters you set for the extraction. Further, include
all the plots of the data reduction in the report (a few in the text, most of them in the appendix). Also
include any parameters for reddening, extinction, and distance that you adopt from the literature.

The results part presents the cluster CMDs and describes the observable features in it.

The analysis of the CMDs contains the estimation of the cluster age based on the turn-off point and an
isochrone fit.

Finally, discuss your findings. Bring your results into a larger context and make a literature
comparison when possible (i.e., for the cluster age). This also includes that you identify potential
problems with the data, the data reduction, or the analysis (especially the isochrone fit) and possible
solutions for them. Are their inconsistencies? Do you see specific and obvious features in the CMD you
cannot explain, that do not match your expectations?

Note: Due to the plots and images the report may not fit into an email appendix. You can upload your
report to the University cloud system (BoxUP) or alternatively put it on the lab course computer and
send us the path to it.

Overview: Laboratory Courses

From:
https://141.89.178.218/wiki/ - OST Wiki

Permanent link:
https://141.89.178.218/wiki/doku.php?id=en:praktikum:photometrie_python

Last update: 2025/07/31 10:08

OST Wiki - https://141.89.178.218/wiki/

https://polaris.astro.physik.uni-potsdam.de/wiki/doku.php?id=en:praktikum:protocol
https://boxup.uni-potsdam.de/index.php/login
https://141.89.178.218/wiki/doku.php?id=en:praktikum:index
https://141.89.178.218/wiki/
https://141.89.178.218/wiki/doku.php?id=en:praktikum:photometrie_python

	N2 - Photometry of open star clusters
	Task
	Observation
	Data reduction
	Preparations
	Get an overview - View pictures
	Install the pipeline

	Reduction pipeline: darkframes, flatfields, and image stacking

	Data analysis
	Defining some variables
	Reading in the images
	World Coordinate System
	Localization of the stars
	Finding the stars
	Check identified stars
	Preparing the extraction results
	Cross correlation and sorting of results
	Conversion of fluxes into magnitudes

	Calibration
	Download calibration data
	Cross correlation with the extracted data
	Magnitude calibration
	Saving the results

	Postprocessing
	CMDs
	Plot apparent CMD
	Reddening & absolute magnitudes
	Absolute CMD plot
	Plot isochrones

	Report

