N1 - Sternspektren verschiedener Spektraltypen (DADOS)

Dieses Anleitung wird aufgrund der Umstellung auf das Gitter mit 900 Linien/mm und der Umstellung auf eine erweiterte Auswertesoftware überarbeitet. DADOS ist jedoch voll funktionsfähig und einsatzbereit. Bei der Auswertung werden die Betreuer bei einigen Schritten behilflich sein, die sich geringfügig von der aktuellen Version dieser Anleitung unterscheiden.

Aufgabe

Ziel des Versuches ist es eine Übersicht der Spektren verschiedener Spektraltypen zu gewinnen. Hierfür sollen anhand einer zur Verfügung gestellten Liste von Sternen (Koordinaten und scheinbare Magnituden) vier Sterne spektroskopiert werden, die während der Nacht gut zu beobachten sind. Die so gewonnenen Spektren gilt es dann anhand der Linien im Spektrum sowie der Form des Kontinuums einem Spektraltyp zuzuordnen.

Beobachtung

Der Versuch erfordert Nachtbeobachtungen am OST der Uni Potsdam. Der Versuchshintergrund und die Technik zur Aufnahme der Spektren wird im Rahmen von Vorträgen im Praktikumsseminar vorbesprochen. Eine Liste mit geeigneten Objekten wird von den Betreuern zur Verfügung gestellt.

Beachte: Folgende Aufnahmen müssen für *jeden* Stern gemacht werden:

- Sternspektren
- Kalibrationsspektren mit einer diskreten Lichtquelle
- Kalibrationsspektren mit einer kontinuierlichen Lichtquelle
- Darkframes für die Sternspektren und die kontinuierlichen Kalibrationsspektren

Die Kalibrationsaufnahmen werden später benötigt, um von einer Pixelskala auf Wellenlängen umzurechnen bzw. um Geräteartefakte herauszurechnen.

Datenauswertung

Die Skripte für die Auswertung sind auf dem Praktikumsrechner im Ordner ~/scripts/nl dados/transition version/ zu finden.

Datenreduktion

Vorbereitungen

Die ersten zwei Schritte sind das Einloggen im Praktikumspool und das Kopieren der Beobachtungsdaten (FITS-Files), inklusive Darkframe- und Kalibrations-Aufnahmen aus dem Verzeichnis ~/data/<datum> ins eigene Verzeichnis ~/data reduction/.

Datenreduktion

Für die Datenreduktion steht das Skript **1_masterimages.py** zur Verfügung. Dieses Skript kombiniert die einzelnen Aufnahmen zu entsprechenden "Master"-Dateien. So werden z.B. die einzelnen Darkaufnahmen entsprechend der Belichtungszeit zu *Masterdarks* kombiniert, indem für jedes Pixel der Median über alle Aufnahmen gebildet wird.

In dem Skript müssen folgende Variablen gesetzt werden:

```
###
#
    Path to the directories with the images
#
#
    Darks:
path darks: str = '?'
#
    Flat darks:
path flat darks: str = '?'
#
    Flats:
path flats: str = '?'
    Darks for wavelength calibration exposures:
path wavelength darks: str = '?'
    Wavelength calibration exposures:
path wavelength: str = '?'
    Spectra:
path_spectra: str = '?'
```

path_darks ist der Pfad zu den Darkaufnahmen mit der gleichen Belichtungszeit wie die Aufnahmen für die Spektren. Der Pfad zu letzteren muss in path_spectra angegeben werden. Die Flats sind unter path_flats und die entsprechenden Darks unter path_flat_darks anzugeben. Gleiches gilt für die Aufnahmen zur Wellenlängenkalibrierung, die unter path_wavelength und path wavelength darks anzugeben sind.

Zusätzlich sollte noch die Variable trim_image auf **False** gesetzt werden.

Spektrumauswahl

Es gibt verschiedene Tools, um die im FITS-Format abgelegten zweidimensionalen Aufnahmen zu betrachten. Beispielsweise *ds9*, dass im Terminal gestartet werden kann

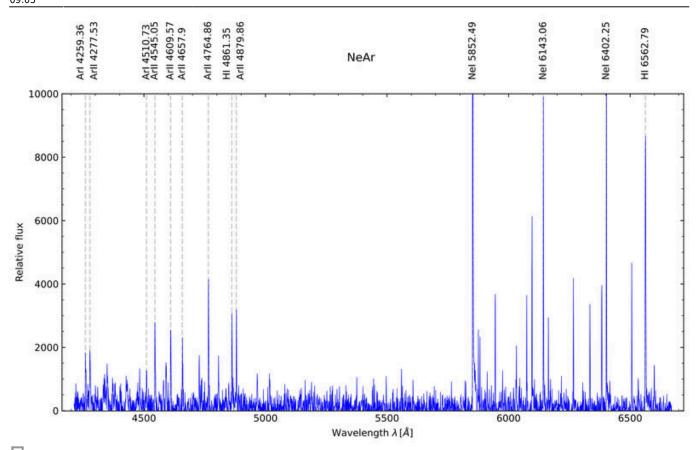
ds9 filename.fit

- Man notiere sich den Zeilenbereich, der das Sternspektrum enthält (master spectrum.fit).
- Man notiere sich einen Zeilenbereich, den man als Hintergrund verwenden kann. Dieser Bereich muss also außerhalb des Sternspektrums liegen, jedoch noch innerhalb des benutzten Spektrographenschlitzes. Falls man letzteren nicht auf dem Bild mit dem Stern-Spektrum sehen kann, orientiere man sich auf den Bild des Lampenspektrums (master_wave.fit).

Wellenlängenkalibration

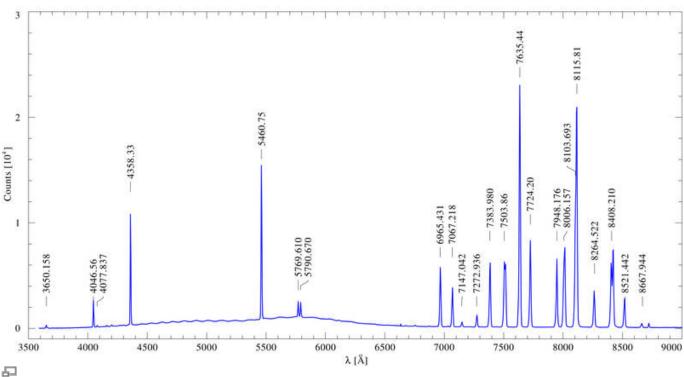
Funktionsprinzip

Das Skript sucht die Maxima im Kalibrations-Spektrum, markiert sie und notiert die Pixelnummer, bei der sich die Intensitätsmaxima befinden. Schließlich wird diesen Werten jeweils eine Wellenlänge zugeordnet. So entsteht eine Pixel-Wellenlängen-Zuordnung, die für die Auswertung des Sternspektrums verwendet wird.


Parameter

Das zugehörige Skript heißt **2_findcaliblines.py**. In dieser Datei muss man mit einem Editor seiner Wahl (z.B. *Kate*) nur den Zeilenbereich editieren, in dem das Kalibrationsspektrum zu finden ist (specRegionStart und specRegionEnd; kann derselbe sein, aus dem man das Sternspektrum extrahieren will) und einen Zeilenbereich, der **außerhalb der Spalte** liegt (bgRegionStart, bgRegionEnd):

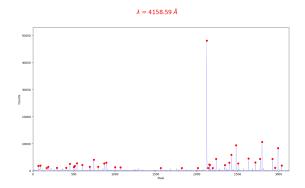
```
# Region (rows on the image) containing the calibration spectrum
specRegionStart = 476
specRegionEnd = 487

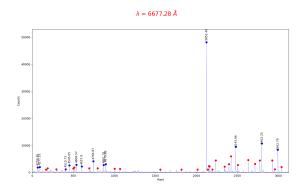

# Background region (rows on the image) -> need to be outside of the slits
bgRegionStart = 815
bgRegionEnd = 870
```

Die Kalibration beruht darauf, dass Neon- und Argonlinien identifiziert werden. Die stärksten Linien, welche zu erwarten sind, sind in der folgenden Grafik identifiziert.

Neon- und Argonemissionslinienspektrum mit entsprechenden Linienidentifikation

Alte Hg- & Ar-Kalibration

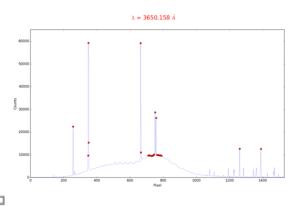

Quecksilber- und Argonemissionslinienspektrum mit entsprechenden Linienidentifikation

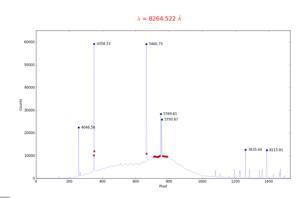

Ausführen des Skriptes

Nun kann das Skript ausgeführt werden:

python 2_findcaliblines.py

Nach dem Ausführen des Skripts erscheint folgendes Fenster, in dem das Emissionslinienspektrum von Neon und Argon dargestellt ist und alle durch das Skript identifizierten Linien mit einem roten Kreis markiert sind. In diesem Fenster müssen nun alle Emissionslinien markiert werden, deren Wellenlänge bekannt ist. Dabei ist das obere Beispielspektrum mit den identifizierten Linien sehr hilfreich. Das Skript gibt die möglichen Linien vor, so dass jeweils nur die entsprechenden roten Kreise durch einen Linksklick markiert werden müssen. Die Wellenlänge der aktuellen Linie wird oben im jeweiligen Fenster rot angezeigt. Sollte die Wellenlänge einer Linie angezeigt werden, die nicht mit einem roten Kreis markiert ist, kann diese mit einem Rechtsklick übersprungen werden. Erfolgreich markierte Linien erscheinen dann blau und die entsprechende Wellenlänge wird neben den Emissionspeak geschrieben (siehe unten). Für eine erfolgreiche Wellenlängenkalibrierung müssen mindestens vier Linien markiert werden. Wenn alle möglichen Linien markiert sind, kann der Vorgang durch Drücken der "Q"-Taste auf der Tastatur abgeschlossen werden.

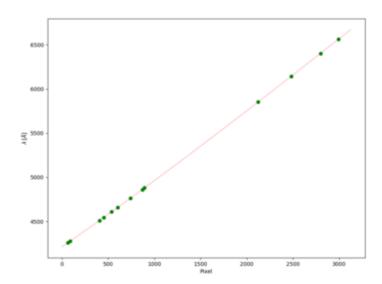




Kalibrationsplot ohne markierte Linien

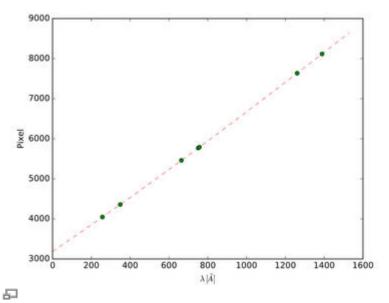
Kalibrationsplot mit sieben markierten Linien

Alte Hg- & Ar-Kalibration


Kalibrationsplot ohne markierte Linien

Kalibrationsplot mit sieben markierten Linien

Anschließend wird von dem Skript die Kalibrationskurve geplotted (siehe unten). Eine Erfolgreiche Kalibration erkennt man daran, dass die Kalibrationskurve nahezu linear ist.


09:03

 $\lambda = -2.80E-09 \times pxi^3 + 2.91E-05 \times pxi^2 + 7.23E-01 \times pxi + 4212.31$

Kalibrationskurve für den DADOS-Spektrographen

Alte Hg- & Ar-Kalibration

Kalibrationskurve für den DADOS-Spektrographen

Von dem Skript werden standardmäßig folgende Dateien erstellt:

- calibration spectrum.dat darin wird jedem Pixel eine Wellenlänge in Angstrom zugeordnet
- calibration_selection.pdf Plot mit den ausgewählten Linien für die Wellenlängenkalibration (bitte an das Protokoll anhängen)
- calibration_fit.pdf hier ist die Wellenlängenkalibration, also wcalibration spectrum.dat, geplottet (bitte an das Protokoll anhängen)

Fehlerbehebung

Die Plots sollten dann auf mögliche Fehler inspiziert werden. Sollte der Kalibrationsplot nicht linear aussehen, muss das Skript korrigiert und neu ausgeführt werden. Fehlerquellen können sein:

- falsch markierte Linien
- ein anderer Wellenlängenbereich als normalerweise wird beobachtet oder eine andere Kalibrationslampe wird benutzt. Man kann z.B. in der NIST Datenbank nachsehen und andere Linien ausfindig machen, die dann in der Variable linelist im Skript eingetragen werden müssen.

Das Sternspektrum

Funktionsprinzip

Nach der Bestimmung der Wellenlängen-Pixel-Zuordnung kann nun das eigentliche Sternspektrum ausgewertet werden. Standardmäßig wird das Spektrum durch das Flatfield geteilt und anschließend die Wellenlängenkalibrierung durchgeführt. Zusätzlich besteht die Möglichkeit, das Spektrum zu normieren und die im Spektrum identifizierten Spektrallinien zu markieren.

Parameter

Das zugehöriges Skript heißt 3_extractspectrum.py. In dieser Datei werden einige Parameter ganz analog zu den obigen Skript gesetzt. Die Parametersektion kann beispielsweise so aussehen:

```
#
    Name of the object
object name: str = "star"
###
#
    Extraction regions
#
#
    Region containing the science spectrum
spec region start: int = 759
spec_region_end: int = 772
    Sky background region (inside the slit)
background_sky_start: int = 710
background sky end: int = 730
###
#
    Plot range
#
#
    Set the variables to '?' for an automatic resizing
lambda min: str | float = '?'
lambda max: str | float = '?'
flux_min: str | float = '?'
flux max: str | float = '?'
###
#
    Normalization ?
```

```
#
    Possibilities: True or False
#
normalize: bool = False
```

Unter object name kann der Name des beobachteten Sterns angegeben werden. Die Variablen spec region start und spec region end definieren die Zeilen des Kamerachips, die das Spektrum enthalten und ausgelesen werden sollen. Vom Sternspektrum muss noch der Himmelshintergrund subtrahiert werden. Dazu muss eine Region ausgewählt werden, die innerhalb des Spalts liegt, aber kein Spektrum enthält. Dieser Bereich wird durch die Variablen background sky start und background sky end definiert. Mit den Optionen lambda min und lambda max sowie flux min und flux max kann der Plotbereicha auf der X- bzw. Y-Achse eingeschränkt werden. Wird in diese Variablen? geschrieben, so wird der Plotbereich automatisch festgelegt.

Ausführen des Skriptes

Analog zu oben wird das Skript mittels:

```
python 3 extractspectrum.py
```

ausgeführt. Standardmäßig werden folgende Dateien erzeugt:

- spectrum_panels_{object_name}.pdf mit dem Spektrum in mehreren Panels (Zoom-Version)
- spectrum total {object name}.pdf mit dem Spektrum dargestellt in einem einzigen
- {object name} spectrum total.dat-mit dem Spektrum in Tabellenform
- {object name} spectrum total.csv mit dem tabellierten Spektrum im CSV-Format

Identifizieren der Spektrallienien

Es besteht die Möglichkeit im Spektrum gefundenen Linien im Spektrumsplot einzuzeichnen. In der Datei absorption lines im Skriptverzeichnis sind einige wichtige Linien aufgelistet. Allerdings enthält diese Datei nicht alle Spektralllinien, die in den vielen unterschiedlichen Sternen auftreten, die wir beobachten. Daher ist es nötig nach zusätzlichen Spektralllinien und deren Übergängen z.B. in der NIST-Datenback zu suchen. Eine Anleitung hierfür haben wir natürlich auch. Darüber hinaus ist es empfohlen, für jeden Stern eine individuelle Datei mit Linienidenifikationen zu erstellen. Um Linien im Plot zu kennzeichnen, überträgt man die relevanten Wellenlängen und Elemente/Ionen in die separate Datei, deren Inhalt dann wie folgt aussehen könnte (Wellenlänge in Å | Ident):

```
3888.052
            ΗI
3970.075
            ΗI
4861.38
            HΙ
6562.88
            HΙ
5801.33
            5811.98
                         CIV
```

Wie im letzten Eintrag zu sehen ist, können auch Ionen mit Multipletübergängen dargestellt werden. Linien, die nicht im Stern wieder gefunden werden, sind aus der entsprechenden Datei zu entfernen.

Hat man diese Datei für ein Spektrum erstellt, kann der dazugehörige Pfad nun in der Parametersektion gesetzt werden. Beispielsweise

```
#File containing line identifications
lineFile = "directory/line_list_for_starname.dat"
```

Dann kann das Skript erneut ausgeführt werden und im Plot sollten die Linien benannt sein.

Protokoll

Ein ueblicher Praktikumsbericht ist anzufertigen. Allemeine Hinweise zum Schreiben von Praktkumsberichten zum Thema Struktur und Inhalt koennen hier eingesehen werden.

Die Uebersicht ueber den theoretischen Hintergrund fuer diesen Versuch beinhaltet eine Beschreibung der Entstehung von Sternspektren, den verschiedenen Spektraltypen und deren Charakteristiken und das Konzept hinter der Messung von Radialgeschwindigkeiten.

In den Methoden sollen die Ablaeufe der Beobachtung beschrieben werden und die anschliessende Reduktion der Daten. Dazu gehoert eine allgemeine Beschreibung der unternommenen Schritte, moeglichen Abweichungen von Standardprozedere und einer Auflistung alle gesetzten Parameter. Alle im Zuge der Datenreduktion anfallenden Grafiken sollen im Bericht vorhanden sein, koennen aber in den Appendix ausgelagert werden.

Der Resultateabschnitt des Reports praesentiert und beschreibt die reduzierten Spektren (ein paar signifikante Ordnungen im Text, der Rest kann in den Appendix).

Die Analyse beinhaltet die Bestimmung des Spektraltyps fuer die einzelnen Sterne basieren auf den Charakteristiken, die im theoretischen Hintergrund gelistet sind.

Abschliessend, diskutiere die Ergebnisse und bringe sie in den groesseren Zusammenhang. Dazu zaehlt z.B. ein Literaturvergleich wo moeglich. Weiterhin soll eine Diskussion moeglicher Fehlerquellen gemacht werden. Gibt es in euren Daten Inkonsistenzen oder Abweichungen vom Erwarteten? Oder gibt es Strukturen und Auffaelligkeiten in den Spektren die ihr nicht erklaeren koennt? Beschreibe moegliche Loesungen und Erklaerungen fuer die gefundenen Probleme.

Anmerkung: Diese Grafik [1] kann hilfreich sein fuer eine erste Klassifizierung der Spektren. Desweiteren koennen die Spektren auch mit einem Spektralatlas verglichen werden. Die NIST web page erlaubt es explizit nach Spektrallinien zu suchen. Auf dieser Website gibt es eine gute Anleitung zum Klassifizieren von Sternspektren.

Anmerkung: Die Plots der individuellem Ordnungen der Spektren sind sehr speicherintensiv und gewoehlich zu gross fuer einen Emailanhang. Ihr koennt den Report in den Universitaetseigenen Cloud Service (BoxUP) hochladen und uns den Link zusenden, oder aber den Dateipfad zu den Plots wenn ihr sie auf dem Praktikumsrechner gespeichert habt.

[1] Struve, O. (1959): Elementary Astronomy (Oxford University Press, New York) p. 259

update: 2024/12/06 de:praktikum:sternspektren https://polaris.astro.physik.uni-potsdam.de/wiki/doku.php?id=de:praktikum:sternspektren&rev=1733475837 09:03

Übersicht: Praktikum

https://polaris.astro.physik.uni-potsdam.de/wiki/ - OST Wiki

Permanent link:

https://polaris.astro.physik.uni-potsdam.de/wiki/doku.php?id=de:praktikum:sternspektren&rev=173347583

Last update: 2024/12/06 09:03

