2026/01/11 21:07 1/21 N2 - Photometrie eines offenen Sternhaufens

N2 - Photometrie eines offenen Sternhaufens

Hinweis: Dieser Artikel schildert die moderne Auswertung des N2-Versuchs mithilfe eines fast
vollautomatischen Python-Skripts fur die Reduktion von Flatfields und Darkframes sowie die Addition
und Ausrichtung der Sternhaufenaufnahmen. Die klassische Version, bei der die Verschiebungen von
Hand ausgemessen und manuell in eine Routine eingegeben werden, wird im Artikel Photometrie
eines offenen Sternhaufens (klassisch) beschrieben. Alternativ gibt es auch noch eine
halbautomatische Version auf Basis von GDL: Photometrie eines offenen Sternhaufens (GDL).

Aufgabe

Photometrieren sie zwei offene Sternhaufen und fertigen sie Farben-Helligkeits-Diagramme (englisch:
color magnitude diagram) dieser Haufen an. Ziel der Arbeit ist die Altersbestimmung (Abschatzung)
der beobachteten Sternhaufen. Zur Suche nach geeigneten Sternhaufen kann u.a. Simbad genutzt
werden - eine Hilfe zur Parametersuche von Simbad gibt es hier.

Kriterien, die die Sternhaufen erflillen muissen, sind:

e Eine hohe Zahl an Sternen im Sichtfeld, mindestens 100 Sterne sollten im Haufen vorhanden
sein.

Eine Sterndichte die nicht so hoch ist, dass die Beugungsscheibchen der Sternen miteinander
verschmelzen.

Ein grolRer Teil des Sternhaufens sollte im Sichtfeld der Kamera sein.

Der Haufen sollte nicht zu klein sein.

Es sollten keine zu starken Helligkeitsunterschiede zwischen den einzelnen Sternen im Haufen
bestehen.

Gutes Beispiel Schlechte Beispiele

OST Wiki - https://polaris.astro.physik.uni-potsdam.de/wiki/

https://polaris.astro.physik.uni-potsdam.de/wiki/doku.php?id=de:praktikum:photometrie-klassisch
https://polaris.astro.physik.uni-potsdam.de/wiki/doku.php?id=de:praktikum:photometrie-klassisch
https://polaris.astro.physik.uni-potsdam.de/wiki/doku.php?id=de:praktikum:photometrie
http://simbad.u-strasbg.fr/simbad/
https://polaris.astro.physik.uni-potsdam.de/wiki/doku.php?id=de:etc:simbad
https://polaris.astro.physik.uni-potsdam.de/wiki/doku.php?id=de:ost:ccds:grunddaten#basic_data
https://polaris.astro.physik.uni-potsdam.de/wiki/lib/exe/detail.php?id=de%3Apraktikum%3Aphotometrie_python&media=en:labcourse:n2:ngc7789_dss2.jpeg
https://polaris.astro.physik.uni-potsdam.de/wiki/lib/exe/detail.php?id=de%3Apraktikum%3Aphotometrie_python&media=en:labcourse:n2:ngc2281_dss2.jpeg
https://polaris.astro.physik.uni-potsdam.de/wiki/lib/exe/detail.php?id=de%3Apraktikum%3Aphotometrie_python&media=en:labcourse:n2:m34_dss2.jpeg

Last
update:
2024/09/19
05:55

Beobachtung

de:praktikum:photometrie_python https://polaris.astro.physik.uni-potsdam.de/wiki/doku.php?id=de:praktikum:photometrie_python&rev=1726725355

Der Versuch erfordert eine Nachtbeobachtung am OST der Uni Potsdam (alternativ auch am 70cm-
Teleskop des AlIP). Zur Vorbereitung sollte die Checkliste: Nachtbeobachtung beachtet werden.

Flr die spatere Datenreduktion missen neben den eigentlichen Aufnahmen der Sternhaufen noch
Flatfields und Darks aufgenommen werden. Bias-Aufnahmen (mit null Belichtungszeit) sind nicht
erforderlich, wenn zu jedem Set an Sternhaufenaufnahmen und Flats auch Darks mit den gleichen
Belichtungszeiten erstellt werden. Am OST kdnnen die Flatfields nach der Beobachtung mit einer
Flatfielfolie aufgenommen werden. Sollte am AIP beobachtet werden, ist es empfehlenswert die
Fladsfields bereits in der Dammerung (oder gegen eine weilRe gleichmaliig beleuchtete Wand)
aufzunehmen. In diesem Fall sind ebenfalls Bias-Aufnahmen erforderlich, die bei geschlossener
Abdeckung zu machen sind. Auf jeden Fall sollten, bei absoluter Dunkelheit und geschlossenen
Abdeckungen, die bereits erwahnten Darkframes aufgenommen werden. Zur Rauschminimierung
sollte jedes Set an Darks und Flats aus mindestens 30 Einzelaufnahmen bestehen.

Nach Eintritt der Dunkelheit werden dann die Aufnahmen der Sternhaufen erstellt. Um eine
ausreichende Zahl an Counts auch von leuchtschwachere Sterne zu erhalten, sollten die Aufnahmen
genlgend lang sein. Je nach verwendeter Kamera und beobachtetem Objekt kann diese Zeitspanne
fur Einzelaufnahmen zwischen 20 Sekunden und etlichen Minuten liegen. Insbesondere wenn auch
hellere Objekte im Gesichtsfeld sind oder bei unzureichender Genauigkeit der Nachfuhrung bietet es
sich an mehrere Aufnahmen zu machen und diese spater aufzuaddieren. Bei dem in Potsdam
typischer Weise vorherschendem Seeing, kénnen die aktuell verwendeten Kameras dariber hinaus
zumeist mit einem 2x2-Binning oder 3x3-Binning betrieben werden, um so das Signal-Rausch-
Verhaltnisis noch weiter zu steigern. In jedem Fall sollte flr diesen Versuch pro Filter eine
Gesamtbelichtungszeit von mindestens 40 Minuten erreicht werden.

Datenreduktion

Vorbereitungen
Uberblick verschaffen - Bilder ansehen

Als erstes steht das Einloggen im Praktikumspool an. AnschlieBend folgt das Kopieren der
Beobachtungsdaten (FIT-Files), inklusive Flatfield- und Bias/Darkframe-Aufnahmen aus dem
Verzeichnis ~/data/<datum> ins eigene Verzeichnis ~/data reduction/. Es gibt verschiedene
Tools, um die im FIT-Format abgelegten zweidimensionalen CCD-Bilder (Images) zu betrachten.
Beispielsweise mittels ds9:

ds9 filename.fit

offnet das Bild filename. fit mit ds9. Nach dem Offnen einer Aufnahme, kann man durch Bewegen
des Cursors bei gedrickter rechter Maustaste die Helligkeit und den Kontrast variieren. Weitere
Optionen (Zoom, Falschfarbendarstellungen, Drehen, Spiegeln usw.) sind per Buttons zu erreichen.
Die Koordinaten der aktuellen Cursor-Position werden links oben angezeigt. Man kann auch mehrere

https://polaris.astro.physik.uni-potsdam.de/wiki/ Printed on 2026/01/11 21:07

https://polaris.astro.physik.uni-potsdam.de/wiki/doku.php?id=de:ost:ccds:ccdops#binning
https://polaris.astro.physik.uni-potsdam.de/wiki/doku.php?id=de:ost:ccds:ccdops#binning
https://polaris.astro.physik.uni-potsdam.de/wiki/doku.php?id=de:praktikum:zugang

2026/01/11 21:07 3/21 N2 - Photometrie eines offenen Sternhaufens

Bilder gleichzeitig 6ffnen (Buttons Frame —» new frame, dann weiteres File mit File - open 6ffnen).
Mit der Blink-Option (Buttons: Frame - blink) kann man mehrere Bilder besonders gut vergleichen.

Alternativ konnen alle Bilder gleichzeitig gedffnet werden. Dazu wird

ds9 *.fit
eingeben (dies ist jedoch nicht fur ein groBe Anzahl an Dateien geeignet). In ds9 kdnnen die Frames
wie oben betrachtet werden oder jeder Frame einzeln hintereinander (Button Frame -» Single

Frame). Dabei kann zwischen den Frames durch Dricken der Tabulatortaste umgeschaltet werden.

Es sind die brauchbaren Beobachtungen fir die weitere Bearbeitung auszuwahlen, in denen die
Sterne als runde Scheibchen zu sehen sind. Bilder mit ovalformigen Sternen sind nicht zu verwenden.

Pipeline installieren

FUr die Datenreduktion und -analyse werden einige Module aus der OST-Photometrie-Pipeline
benotigt. Python-Module sollten immer in einer virtuellen Umgebung installiert werden, da dies
Abhangigkeitsprobleme reduziert. Eine virtuelle Umgebung kann Uber

mkvirtualenv ost photometry
angelegt werden. Die virtuelle Umgebung haben wir auf diese Weise auch gleich den Namen
ost photometry gegeben. Das wir uns in der virtuellen Umgebung befinden lasst sich an dem
String '(ost_photometry)' erkennen, der jetzt jeder Terminalzeile vorausgestellt wird. Uber das
Kommando

deactivate
kann die virtuelle Umgebung verlassen werden. Mochte man sich wieder verbinden kann dies Uber

workon ost photometry

erfolgen. Dies ist auch ndétig wenn man sich, z.B. nach einer Unterbrechung der Arbeit, erneut mit al2
verbindet und die Datenauswertung fortsetzen mochte.

Die OST-Photometrie-Pipeline kann anschliefend in dem terminal mittels pip wie folgt installiert
werden kann:

pip install ost photometry

Alle bendtigten Abhangigkeiten werden auf diese Weise ebenfalls installiert.

Reduktions-Pipeline: Darkframes, Flatfields und Bildstacking

Um auch mit einer gréBeren Menge von Daten zurecht zu kommen, gibt es eine Python-Routine, die
pro Filter die Korrekturen fir Darkframe und Flatfield durchfihrt, anschlieBend die Bilder pro Filter
aufaddiert und zueinander ausrichtet. Die Routine nimmt keine Qualitatskontrolle der Bilder vor,

OST Wiki - https://polaris.astro.physik.uni-potsdam.de/wiki/

Last
update:
2024/09/19
05:55

de:praktikum:photometrie_python https://polaris.astro.physik.uni-potsdam.de/wiki/doku.php?id=de:praktikum:photometrie_python&rev=1726725355

unbrauchbare Beobachtungen mussen also auf jeden Fall vorher aussortiert werden, sonnst kann es
zu Problemen bei der Ausrichtung kommen.

Man kopiert sich zunachst das Python-Skript 1 add images.py aus dem Verzeichnis
~/scripts/n2/ in sein lokales Arbeitsverzeichnis. Danach sollte man diese mit einem beliebigen
Texteditor 6ffnen, um die Pfadangaben flr die Bilder entsprechend anzupassen. Um eine grolere
Menge von Bildern bequem einlesen und verifizieren zu kdnnen, erwartet das Programm eine
Trennung der Daten in verschiedene Unterverzeichnisse (Variablen: bias, darks, flats, imgs). Es
sollte jeweils ein Verzeichnis fur die Aufnahmen des Sternhaufens, der Flatfields und der Darkframes
existiere. Eine mogliche Verzeichnisstruktur ware:

/bias/
/darks/
/flats/
/imgs/

Das Python-Skript erkennt automatisch die verwendeten Filter und Belichtungszeiten. Darauf
aufbauend ordnet sowie klassifiziert es die Dateien automatisch ohne das weiteres Zutun nétig ist. Ist
man sich sicher, dass alle FIT-Header Schlusselworter korrekt gesetzt sind konnen alle Datei
versuchsweise auch in einem einzigen Verzeichnis abgelegt werden. In diesem Fall muss in dem
Skript nur der Pfad rawfiles gesetzt werden. Anderenfalls missen die Pfade zu den Unterordnern
bei den entsprechenden Variablen angegeben werden.

Konfigurationsbereich von 1 _add images.py:

S Individual folders ######
Path to the bias -- If set to '?', bias exposures are not used.
bias = '?"'

Path to the darks
darks = '?'

Path to the flats
flats = '?'

Path to the images
imgs = '?'

H#HHHHHR AR Simple folder structure #####HH#HHAHHHAHH AR
rawfiles = '?'

Wurden die Pfandangaben und der Name des Sternhaufens angepasst, kann anschliefend das Skript
mittels

python 1 add images.py

ausgefuhrt werden.

Die Ergebnisse liegen in einem neuen Unterverzeichnis namens output.

https://polaris.astro.physik.uni-potsdam.de/wiki/ Printed on 2026/01/11 21:07

2026/01/11 21:07 5/21 N2 - Photometrie eines offenen Sternhaufens

Datenauswertung mit Python

Es empfiehlt sich, alle folgende Schritte nicht auf der Kommandozeile von Python auszufihren,
sondern ein kleines Skript auswertung.py (oder jeden anderen Namens) zu schreiben. Hierzu die
gewunschten Programmdatei mittels eines Texteditors (im folgenden Fall Kate) 6ffnen:

kate auswertung.py &

Am den Beginn des Python-Skripts werden erst einmal die bendtigten Module mit hilfreichem Code
eingebunden. In unserem Fall sind das Numpy, einige Astropymodule, Astroquery sowie einige Teile
unserer OST-Bibliothek:

import numpy as np

from astropy.coordinates import SkyCoord, matching
import astropy.units as u
from astropy.table import Table

from astroquery.vizier import Vizier

from ost photometry.analyze.analyze import main extract
from ost photometry.analyze.plots import starmap, scatter
from ost photometry.utilities import (

find wcs astrometry,

Image,
)
from ost photometry.analyze.utilities import (

clear duplicates,

)

import warnings
warnings.filterwarnings('ignore')

Uber die letzten zwei Zeilen werden noch einige Warnungen abgeschaltet, die die Konsolenausgabe
unnotig Uberfrachten.

Definieren einiger Variablen

Als nachstes sollten einige Variablen definiert werden. Dies sollten wenigsten der Name des
Sternhaufens (name), das Verzeichnis in dem die Ergebnisse spater abgelegt werden (out path)
sowie die Pfade (V_path und B_path) zu den beiden uber die obige Pipeline aufaddierten und
reduzierten Aufnahmen des Sternhaufens in den betrachteten Filtern (hier V und B) sein.

Cluster name (recognizable by Simbad/Vizier)
name = 'NGC7789'

Directory to save the data
out path='output/'

OST Wiki - https://polaris.astro.physik.uni-potsdam.de/wiki/

Last
update:
2024/09/19
05:55

de:praktikum:photometrie_python https://polaris.astro.physik.uni-potsdam.de/wiki/doku.php?id=de:praktikum:photometrie_python&rev=1726725355

Images
V path 'output/combined trimmed filter V.fit'
B path ‘output/combined trimmed filter B.fit'

Hinweis: Die hier und im weiteren angegeben Variablennamen sind nur beispielhaft und kénnen durch
jede beliebige andere Bezeichnung ersetzt werden.

Hinweis: Liegen die Bilder nicht in einem Unterverzeichnis des aktuellen Verzeichnisses, kann mittels
. ./ der Pfad auch auf jeweils auf die nachsthéhere Ebene verweisen.

Einlesen der Bilder

Wir 6ffnen die FIT-Dateien mit Aufnahmen mittels der Funktion image, die Uber die OST-Bibliothek
bereit gestellt wird. Dies hat den Vorteil, dass wir uns nicht um die Details des Einleseprozesses
kimmern missen und gleichzeitig flr jedes Bild ein Python-Objekt zur Verfiigung steht, in dem die
Ergebnisse der folgenden Schritte sortiert abgelegt werden kénnen. Die image-Funktion hat folgende
Argumente: 1. Index des Bildes (kann hier auf @ gesetzt werden), 2. Filterbezeichnung, 3. Pfad zur
Bilddatei und 4. Pfad zum Output-Verzeichnis:

Load images
V _image = Image(O, 'V', V path, out path)
B image = Image(0, 'B', B path, out path)

World Coordinate System

Die vom OST erstellten Aufnahmen werden in der Regel ohne ein sogenanntes WCS ausgeliefert. WCS

steht fur World Coordinate System und ermdglicht es jedem Pixel im Bild eigene Himmelskoordinaten

zuzuweisen. In ds9 werden diese dann z.B. auch beim zeigen mit dem Mauszeiger auf bestimmten

Pixel bzw. auf bestimmte Objekte in dem Koordinatenfenster von ds9 angezeigt. Dies ist sehr hilfreich

wenn man z.B. die Positionen von Sternen im eigen Bild mit denen in Sternenkatalogen abgleichen
=

-

will. Dies konnte bei der spateren Kalibrierung der Sternmagnituden durchaus hilfreich sein

Far die Bestimmung des WCS fehlen uns allerdings noch ein paar Voraussetzungen. Die ungefahren
zentralen Koordinaten des abgebildeten Himmelsausschnitt sind zwar bereits in den Header der FIT-
Dateien hinterlegt, das genau Gesichtsfeld und die Pixel-Skala der erstellten Aufnahmen mussen
allerdings noch ermittelt werden. Dies erzielen wir mit der Funktion cal fov, der als Argument das
bereits angelegt image-Objekt Ubergeben wird:

Calculate FOV
calculate field of view(V_image)
calculate field of view(B image)

Das Gesichtsfeld und die Pixel-Skala wird automatisch im image-Objekt hinterlegt.

AnschlieBend kann mittels der Funktion find wcs astrometry die Bestmmung des WCS gestartet
werden:

https://polaris.astro.physik.uni-potsdam.de/wiki/ Printed on 2026/01/11 21:07

2026/01/11 21:07 7/21 N2 - Photometrie eines offenen Sternhaufens

Find the WCS solution for the images
find wcs astrometry(V _image)
find wcs _astrometry(B image)

Wurde eine WCS-Ldsung gefunden wird auf der Kommandozeile in grin
WCS solution found :)

ausgegeben.

Identifikation der Sterne

Finden der Sterne

Die Identifikation der Sterne in den beiden Bildern erfolgt mittels der Funktion main extract. Diese
Funktion nimmt als erstes Argument wiederum das image-Objekt. Das zweite Argument
charakterisiert die GrolRe der Beugungsscheibchen. Dieses Sigma kann an Hand der Bilder bestimmt
werden. Liegt aber in der Regel um den Wert 3. 0. Als optionales Argument kann dann noch die
Extraaktionsmethode ausgewahlt werden (photometry). Hier spezifizieren wir ' APER', und wahlen
so Apertur-Photometrie aus, bei der der Fluss der einzelnen Objekte und der zugehdrigen
Himmelshintergrinde innerhalb einer fest definierten (hier kreis- bzw. ringformigen) Apertur
ausgelesen wird. Um diese Apertur zu spezifizieren geben wir noch den Radius fur die kreisformige
Objektapertur (rstars) sowie die beiden Radien fur die ringformige Hintergrundapertur (rbg_in und
rbg out) an. Bewahrt haben sich hier 4 sowie 7 und 10. Die Radien sind jeweils in Bogensekunden.

Extract objects
main extract(
V_image,
sigma,
photometry extraction method='APER',
radius aperture=4.,
inner _annulus radius=7.,
outer annulus radius=10.,
)
main_extract(
B image,
sigma,
photometry extraction method='APER',
radius aperture=4.,
inner_annulus radius=7.,
outer _annulus radius=10.

Zusatzlich zu den Sternkoordinaten (in Pixel) speichert main extract auch alle extrahierten Flisse
automatisch in den image-Objekten.

OST Wiki - https://polaris.astro.physik.uni-potsdam.de/wiki/

Last
update:
2024/09/19
05:55

de:praktikum:photometrie_python https://polaris.astro.physik.uni-potsdam.de/wiki/doku.php?id=de:praktikum:photometrie_python&rev=1726725355

Gefundenen Sterne priifen

Die im vorherigen Schritt ausgefuihrte Funktion main_extract hat die schone Eigenschaft, dass sie
die identifizierten Sterne auf einer sogenannten “Starmap” kennzeichnet. Diese kann genutzt werden,
um zu prufen, welche und im Endeffekt auch ob genligend Sterne gefunden wurden. Die Starmaps
befinden sich im Ausgabeverzeichnis (Variable: out path) und dort im Unterverzeichnis starmaps.
Sollten auf der einen Seite nicht genugend Sterne identifiziert worden sein oder auf der anderen Seite
neben Sternen auch Rauschen falschlicherweise als Sterne erkannt worden sein, dann sollte im Aufruf
von main_extract der sigma-Parameter angepasst werden.

Aufbereiten der Extraktionsergebnisse

Far die weiteren Schritte benétigen wir die extrahierten Flusse und die Sternposition am Besten in
Form von Astropy-Tabellen bzw. Spalten aus diesen. Die Tabellen mit den Ergebnissen erhalten wir
mittels:

Get table
photo V = V image.photometry
photo B = B image.photometry

Aus diesen lassen sich wiederum einfach die bestimmten Sternpositionen in Pixel extrahieren:

X
<
|

= photo V['x fit']
y V = photo V['y fit']

x B = photo B['x fit']
= photo B['y fit']

A
o
|

Kreuzkorrelation und Sortierung der Ergebnisse

Nun mussen diejenigen Sterne herausgesucht werden, die in beiden Spektralbereichen/Filtern
identifiziert worden sind. Dies geschieht mittels des astropy.coordinates-Paketes, bzw. den Uber
diese Paket zur Verfugung gestellten Korrelations-Funktionen fur Datensatze. Da diese Funktionen
nicht auf Pixelkoordinaten sondern auf Basis von Himmelskoordinaten arbeiten, mussen wir unsere
zuvor bestimmten Pixelkoordinaten noch in ein geeignet Koordinatensystem umrechnen. Hier ist es
zum ersten Mal natzlich, dass wir zuvor das WCS bestimmt haben.

Als erstes legen wir uns SkyCoord-Objekte fur jeden der beiden Datensatze an. Diese Objekte, wenn
sie einmal definiert sind, erlauben die Ausgabe der Koordinaten in einer Vielzahl von bereits
vordefinierten Koordinatensystem. Daruber hinaus, und das ist noch praktischer, werden diese
Objekte auch als Argument von einer Reihe von Astropy-Funktionen und -Klassen akzeptiert. Aus
diesem Grund braucht man sich in der Regel keine weiteren Sorgen daruber machen, in welchem
Koordinatensytem man gerade eigentlich arbeitet, da dies alles intern von Astropy geregelt wird. Wir
definieren unsere SkyCoord-Objekte Uber die Option . from pixel(), welches es uns erlaubt diese

https://polaris.astro.physik.uni-potsdam.de/wiki/ Printed on 2026/01/11 21:07

2026/01/11 21:07 9/21 N2 - Photometrie eines offenen Sternhaufens

direkt auf Basis der Pixelkoordinaten und des zuvor bestimmten WCS (welches wir dem image-Objekt
entnehmen kdnnen) zu definieren.

Create SkyCoord objects
coords V = SkyCoord.from pixel(x V,

y V, V_image.wcs)
coords B = SkyCoord.from pixel(x B, y B, B

, image.wcs)

Diese beiden SkyCoord-Objekte konnen dann mittels der Funktion search around sky
miteinander korreliert werden. Neben den beiden SkyCoord-Objekten bendtigt diese Funktion als
drittes Argument noch die erlaubte Toleranz in den Koordinaten (unter derer zwei Objekte aus beiden
Datensatz noch als das Gleiche erkannt werden). In unserem Fall wahlen wir groRzlgige 2
Bogensekunden. Die Einheit wird hier Uber das astropy.units-Paket definiert, dass wir oben unter
der Abklrzung u geladen haben.

Correlate results from both images
id Vv, id B, , = matching.search_around sky(coords V, coords B,
2.*u.arcsec)

Die erfolgreich zugeordneten Sterne bekommen jeweils einen Eintrag in id V und id B. Diese beiden
Listen (genauer gesagt Numpy arrays) enthalten die Indexwerte, die diese Sterne in den urspringlich
unsortierten Datensatzen hatten. Das heiSt wir kdnnen diese Indexwerte nutzen, um die
ursprunglichen Tabellen mit den FlUssen und Sternpositionen so zu sortieren, dass sie nur noch Sterne
enthalten die in beiden Aufnahmen detektiert wurden und das die Reihenfolge der Sterne in beiden
Datensatzen die Gleiche ist. Diese Zuordnung ist essentiell fir das weitere Vorgehen.

Das Sortieren erfolgt einfach indem man die Arrays mit den Indexwerten in die Tabellen einsetzt. Wir
selektieren und gleichzeitig sortieren so die in beiden Aufnahmen identifizierten Sterne.

Sort table with extraction results and SkyCoord object
photo V sort = photo V[id V]
photo B sort = photo B[id B]

coords objs = coords V[id V]

Neben den beiden Tabellen mit den Extraaktionsergebnissen haben wir auch eines (welches ist egal)
der SkyCoord-Objekte sortiert. Dies wird uns im Ubernachsten Schritt noch von Nutzen sein.

Umrechnung der Fliusse in Magnituden

Da im folgenden in Magnituden gearbeitet wird, mussen die Flusse entsprechend umgerechnet
werden. Die Umrechnung kann gleich auf Basis der zuvor extrahierten Tabellen erfolgen (die Fllsse
sind hier in der Spalte flux fit abgelegt) bzw. die Magnituden kénnen auch gleich als neue Spalte
den Tabellen hinzugefugt werden:

Calculate magnitudes
photo V sort['mag'] = -2.5 * np.loglO(photo V sort['flux fit'])
photo B sort['mag’] -2.5 * np.loglo(photo B sort['flux fit'])

Man beachte, dass die Magnituden nur bis auf eine additive Konstante bestimmt sind, solange noch

OST Wiki - https://polaris.astro.physik.uni-potsdam.de/wiki/

Last
update:
2024/09/19
05:55

de:praktikum:photometrie_python https://polaris.astro.physik.uni-potsdam.de/wiki/doku.php?id=de:praktikum:photometrie_python&rev=1726725355

keine Eichung durchgefihrt wurde.

Kalibrierung

Die Helligkeiten (Magnituden) sind bislang nur bis auf eine Verschiebung (additive Konstante, den
sogenannten Zeropoint) bestimmt. Die Eichung (Kalibration) stellt ohne Zugang zu einer Datenbank
mit Vergleichssternen ein erhebliches Problem dar. Glucklicherweise bietet die astronomische
Gemeinschaft solche Datenbanken an, die wir anzapfen kénnen. Wir werden die VizieR-Datenbank
des Centre de Données astronomiques de Strasbourg benutzen bzw. unsere Kalibrationsdaten
von dort beziehen. Hierfur werden wir das astroquery-Paket und daraus das Vizier-Modul
benutzen.

Download Kalirationsdaten

Zuerst definieren wir den Katalog, auf den wir zugreifen wollen. In unserem Fall benutzen wir den
APASS-Katalog, der unter der ID I1/336/apass9 lauft. Des Weiteren definieren wir die Spalten, die
wir benétigen. Wir beschranken uns hier auf die Spalten, die wir wirklich brauchen, um die
Downloadzeit gering zu halten. Die Spaltenbezeichnungen sind zum Teil Katalog spezifisch, sodass fur
einen anderen Katalog unter Umstanden andere Spaltenbezeichnungen zu benutzen sind.

Get calibration from Vizier
catalog = 'II/336/apass9'’
columns = ['RAJ2000', 'DEJ2000', "Bmag", "Vmag", "e Bmag", "e Vmag"]

AnschlieBend definieren wir das Vizier-Objekt. Wir Ubergeben diesem die Katalog-ID, die
Spaltendefinition und setzen das sogenannte row limit noch auf 10°6. Durch letzteres wird die
herunterzuladende Tabelle auf 1076 Zeilen und somit das Downloadvolumen begrenzt. Dies machen
wir, um beim Download nicht in eine Zeituberschreitung des Servers zu laufen.

v = Vizier(columns=columns, row limit=1e6, catalog=catalog)

Im nachsten Schritt konnen wir den Download ausfluhren. Hierbei nutzen wir die Funktion

.query region. Dieser mussen wir noch die Koordinaten und die GroRe des abzufragenden
Himmelsbereiches Ubergeben. Glicklicherweise ist beides bereits bekannt. Die Koordinaten kennen
wir aus den FIT-Header der Sternhaufenaufnahmen und fir den Radius des abzufragenden Bereichs
nehmen wir einfach das Gesichtsfeld, was wir uns bereits oben ausgerechnet haben. Beide GroRen
konnen wir z.B. dem V_image-Objekt entnehmen.

calib tbl = v.query region(V image.coord, radius=V image.fov*u.arcmin)[0]

Die Tabelle calib_tbl enthalt nun alle in dem APASS-Katalog enthaltenen Objekte mit ihren B- und
V-Magnituden, welche sich in unserem Gesichtsfeld befinden.

L]

Aufgabe: Schranken Sie den heruntergeladenen APASS-Katalog auf alle Objekte im V-

https://polaris.astro.physik.uni-potsdam.de/wiki/ Printed on 2026/01/11 21:07

2026/01/11 21:07 11/21 N2 - Photometrie eines offenen Sternhaufens

Magnitudenbereich von 10 bis 15 mag ein. Auf diese Weise wird sichergestellt, dass
potentiell Gber- als auch unterbelichtete Sterne in unseren Aufnahmen nicht far die
Kalibrierung verwendet werden.

LI Hinweis: Zur Bewaltigung dieser Aufgabe kann es hilfreich sein, sich ein wenig mit
booleschen Masken, Vergleichsoperation und boolescher Logik zu befassen.

Alternativ zum APASS-Katalog kann der “Fourth U.S. Naval Observatory CCD Astrograph Catalog”
(UCAC4) zur Kalibrierung verwendet werden, der die ID I/322A/ hat.

Kreuzkorrelation mit den extrahierten Daten

Anschlielend muss nun der heruntergeladene Katalog mit den oben extrahierten Sternkoordinaten
korreliert werden. Hierfur legen wir erneut ein SkyCoord-Objekt an. Diesmal fur die
Kalibrationssterne. Anders als oben konstruieren wir das SkyCoord-Objekt diesmal direkt aus den
Rektaszension- und Deklinationskoordinaten, welche wir der Tabelle calib tbl entnehmen kdénnen.
Die Rektaszensionswerte findet man in der Spalte RAJ2000, wohingegen die Deklinationswerte sich in
der Spalte DEJ2000 befinden. Des Weiteren mussen noch die Einheiten fur die Koordinaten
angegeben werden. In unserem Fall sind das jeweils Grad (u.deq). Als letztes Argument (frame)
sollte noch das Koordinatensystem definiert werden. In unserem Fall missen wir icrs angeben.

Set up SkyCoord object with position of the calibration objects
coord calib = SkyCoord(

calib tbl['RAJ2000'].data,

calib tbl['DEJ2000'].data,

unit=(u.deg, u.deqg),

frame="icrs"

)

Wie bereits oben korrelieren wir auch hier die Kalibrationsdaten mit unseren Ergebnissen mittels
dersearch _around sky-Funktion aus dem matching-Modul von Astropy. Als Argumente Ubergeben
wir das soeben definierte SkyCoord-Objekt fiir die Kalibrationssterne, das SkyCoord-
Objekt fir die Sterne welche wir in beiden Filtern gefunden haben (coords objs) sowie die
maximale Distanz zwischen Sternen in beiden Datensatzen unter derer diese noch als das selbe
Objekt erkannt werden.

Correlate extracted object position with calibration table
ind fit, ind lit, , = matching.search around sky(

coords objs,

coord calib,

2.*u.arcsec,

)
Auf diese Weise erhalten wir wieder Indexwerte, die wir nutzen kénnen, um die Kalibrationssterne
sowohl aus den Datensatzen fur die beiden Filter als auch aus dem heruntergeladenen Katalog zu

selektieren:

Select data of the calibration stars

OST Wiki - https://polaris.astro.physik.uni-potsdam.de/wiki/

https://jakevdp.github.io/PythonDataScienceHandbook/02.06-boolean-arrays-and-masks.html

Last
update:
2024/09/19
05:55

de:praktikum:photometrie_python https://polaris.astro.physik.uni-potsdam.de/wiki/doku.php?id=de:praktikum:photometrie_python&rev=1726725355

photo V sort calib
photo B sort calib

photo V sort[ind fit]
photo B sort[ind fit]

Select literature data of the calibration stars
calib tbl sort = calib tbl[ind lit]

Magnitudenkalibrierung

Nun sind wir in der Lage die eigentliche Kalibrierung der Magnituden durchzufuhren. Hierfur
berechnen wir den sogenannten Zeropoint, indem wir fir die Kalibrationssterne in jeden der beiden
Filter unsere extrahierten Magnituden von den Magnituden aus dem heruntergeladenen Katalog
abziehen und anschliefend mit der Funktion .ma.median aus dem Numpy-Modul tber alle
Kalibrationssterne den Median bilden:

Calculate zero points
ZP V = np.ma.median(calib tbl sort['Vmag'] - photo V sort calib['mag'])
ZP B = np.ma.median(calib tbl sort['Bmag'] - photo B sort calib['mag'])

AnschlieBend mussen die berechneten Zeropoints noch zu den Magnituden der Sterne in den Tabellen
photo V sort und photo B sort addiert werden. Um die Ubersichtlichkeit und Reproduzierbarkeit
zu gewahrleisten sollten die kalibrierten Magnituden jeweils in einer eigene Spalte den Tabellen
hinzugefugt werden:

Calibrate magnitudes
photo V sort['mag cali']
photo B sort['mag cali']

photo V sort['mag'] + ZP_ V
photo B sort['mag'] + ZP B

Prifen der Kalibrationssterne

Eine Maglichkeit, die Validitat der Kalibrationssterne zu prufen ist diese sich auf einer Starmap
darzustellen (ahnlich zu dem was die main extract oben automatisch macht). In diesem Fall wollen
wir aber die heruntergeladenen Sternpositionen als auch die Sterne darstellen, die dann spater auch
wirklich far die Kalibrierung verwendet wurden. Hierfur bietet die OST-Bibliothek eine geeignete
Funktion (starmap) an, die solche Plots erstellen kann. Diese Funktion kann Uber

from ost photometry.analyze.plot import starmap

eingebunden werden. Da diese Funktion als Eingabe eine Astropy-Tabellen, mit den darzustellenden
Daten erwartet, mussen wir zuerst diese erstellen, bevor wir die Starmap plotten kénnen. Die Position
der Kalibrationssterne liegen bisher nicht in Pixelkoordinaten vor, da wir diese Information von der
Simbad- bzw. Vizier-Datenbank bezogen haben. Daher mussen wir zuerst diese erzeugen. An dieser
Stelle ist es wieder praktisch, dass wir zuvor ein SkyCoord-Objekt fur diese Sterne erzeugt haben.
Mittels .to_pixel() unter Angabe des WCS des Bildes lassen sich hieraus ganz einfach
Pixelkoordinaten erzeugen:

Calculate object positions in pixel coordinates

https://polaris.astro.physik.uni-potsdam.de/wiki/ Printed on 2026/01/11 21:07

2026/01/11 21:07 13/21 N2 - Photometrie eines offenen Sternhaufens

x _cali, y cali = coord calib.to pixel(V_image.wcs)
Anschliefend kdonnen wir mit diesen Information die Tabelle erstellen:

tbl xy cali all = Table(
names=["'id', 'xcentroid', 'ycentroid'],
data=[np.arange(0,len(y cali)), x cali, y cali]

)

Das Ganze wiederholen wir jetzt noch einmal fur das SkyCoord-Objekt, dass nur die Sterne enthalt,
die sowohl in der Datenbank waren als auch auf beiden Aufnahmen (beide Filter) des Sternhaufens
identifiziert wurden:

x cali s, y cali s = coords objs.to pixel(V _image.wcs)

tbl xy cali s = Table(
names=["'id"', 'xcentroid', ‘'ycentroid'],
data=[np.arange(0,len(y cali s)), x cali s, y cali s]

)

Daraufhin haben wir alles vorbereitet und kdnnen die Starmap plotten:

starmap (
out path,
V _image.get data(),
e
tbl xy cali all,
label="'Downloaded calibration stars',
tbl 2=tbl xy cali s,
label 2='Identified calibration stars',
rts='calibration',
nameobj=name,

)

Hierbei ist das erste Argument unser Ausgabeverzeichnis, das zweite Argument das eigentlich Bild
(als Numpy-Array), das dritte Argument die Filterbezeichnung, das vierte Argument die erste Tabelle,
label das Label zum ersten Datensatz, tbl 2 die zweite Tabelle, Label 2 das Label zum zweiten
Datensatz, rts eine Beschreibung des Plots und nameobj der Name des Sternhaufens.

Alternativ kann man die Starmap auch direkt tUber pyplot aus dem matplotlib-Modul erstellen.
Dies ist nicht viel aufwendiger bietet aber mehr Méglichkeiten zur Anpassung des Plots. Geladen wird
pyplot mittels:

import matplotlib.pyplot as plt
Der “Grafikgrundstock” wird Uber

fig = plt.fiqgure(figsize=(20,9))

erstellt. AnschlieBend kann das eigentliche Bild geladen werden:

OST Wiki - https://polaris.astro.physik.uni-potsdam.de/wiki/

Last
update:
2024/09/19
05:55

de:praktikum:photometrie_python https://polaris.astro.physik.uni-potsdam.de/wiki/doku.php?id=de:praktikum:photometrie_python&rev=1726725355

plt.imshow(image, origin='1lower"')

image sind hierbei die eigentlichen Bilddaten und origin=1lower stellt sicher, dass das mit dem
Uberplotten der Koordinaten auch klappt. Daraufhin kdnnen die Symbole, die die Sternposition
kennzeichnen geplottet werden:

plt.scatter(x positions, y positions)

X_positionsundy positions sind hier die X- bzw Y-Sternpositionen in Pixel. .scatter bietet
eine Vielzahl an Konfigurationsmaoglichkeiten wie z.B. die Auswahl des Symbols, Farbe, Linienstarke
und vieles vieles mehr. Diesbezuglich verweisen wir auf die vielfaltigen Dokumentation und Tutorials
hierzu im Internet. Auch bezlglich Labels, Titel, Legenden und Achsenbeschriftungen lassen sich dort
mehr als genug Informationen finden. Uber

plt.savefig(filename)

lasst sich der Plot abspeichern. Hierbei ist filename der Dateiname bzw. der Pfad zur Datei.
Alternativ kann der Plot Uber

plt.show()

auch direkt dargestellt werden. In diesem Fall muss aber unter Umstanden das Backend geandert
werden bevor plt.show() aufgerufen wird:

plt.switch backend('TkAgg')
Am Ende des Plots sollte dieser mittels
plt.close()

geschlossen werden.

Speichern der Ergebnisse

Ist die Kalibrierung erfolgt, sollten wir unsere extrahierten und kalibrierten Magnituden noch
abspeichern. Da die Tabellen photo V sort und photo B sort einige Daten enthalt, die wir nicht
fir die Erstellung des FHDs benétigen und wir diese der Ubersichtlichkeit halber nicht mitspeichern
wollen, erstellen wir uns eine neue Tabelle, die nur die relevanten Daten enthalt. Die neue Tabelle
kann einfach mittels Table() angelegt werden. AnschlieBend fugen wir dieser Tabelle die flr uns
relevanten Spalten aus den Tabellen photo V sort und photo B sort hinzu:

Create new table for the CMD

results = Table()

results['id'] = photo V sort['id']
results['x'] = photo V sort['x fit']
results['y'] = photo V sort['y fit']
results['B [mag]'] = photo B sort['mag cali']

https://polaris.astro.physik.uni-potsdam.de/wiki/ Printed on 2026/01/11 21:07

2026/01/11 21:07 15/21 N2 - Photometrie eines offenen Sternhaufens

results['V [mag]'] = photo V sort['mag cali']

Ist die neue Tabelle fertig beflllt, erlaubt es Astropy diese Tabelle sehr bequem Uber den Befehl
.write zu speichern. Es muss noch als erstes Argument der Pfand bzw. Dateinamen angegeben
werden, unter dem die Tabelle gespeichert werden soll. Des Weiteren spezifizieren wir noch das
Format format (wir wahlen hier ascii) und setzen den Parameter overwrite auf True, sodass
falls wir das Skript mehrfach laufen lassen auch immer die aktuellen Daten in die Datei geschrieben
werden kdénnen.

Save table
results.write(out path + 'cmd.dat', format='ascii', overwrite=True)

Nachbearbeitung

Schaut man sich die Aufnahmen der Sternhaufen an wird man feststellen, das die Sternhaufen in der
Regel nur einen Teil des Gesichtsfeldes einnehmen. Zumeist wird dieser Bereich zwischen 30% und
60% des Gesichtsfeldes liegen. Wir beobachten also wahrscheinlich neben den Sternhaufen eine
ganze Reihe weiterer Sterne, sogenannter Feldsterne, die eigentlich nicht zu unserem Sternhaufen
gehoren. Auch zwischen uns und dem Sternhaufen werden sich in der Regel einige Sterne befinden.
Da diese Sterne aller Wahrscheinlichkeit nach nicht zusammen mit dem zu untersuchenden
Sternhaufen entstanden sind werden diese Sterne unsere Ergebnisse in Bezug auf die
Altersbestimmung verfalschen bzw. diese schwieriger interpretierbar machen.

Aufgabe: Versuchen sie die Auswahl der Sterne so weit wie Mdglich auf den eigentlichen
Sternhaufen zu begrenzen. Sie haben hierfur zwei Mdglichkeiten, die alternativ oder
additiv angewendet werden kénnen.

1. Schranken sie die Auswahl der Sterne auf z.B. 10 Bogenminuten um die zentralen
Koordinaten des Sternhaufens ein
2. Laden Sie, wie oben in der Kalibrierung vorgefuhrt, die Daten aus dem Gaia-
& Archive (Katalog-ID: I/350/gaiaedr3) herunter und schauen Sie sich aus diesem
Datensatz insbesondere die Spalten bezuglich der Eigenbewegung der Sterne an.
Nutzen Sie diese Daten, um die Sternhaufenmitglieder zu selektieren.

Hinweis: Hilfreich ist es auf jeden Fall, sich Starmaps (wie unter dem Punkt “Priifen der
Kalibrationssterne” beschrieben) oder ahnliche Plots zu erstellen, die einem bei der
Bewertung der Resultate helfen.

FHDs

Scheinbares FHD plotten

Zur Erstellung des FHDs steht wiederum ein Python-Skript zur Verfliigung, in dem nur ein paar Pfade
und wenige weitere Parameter angepasst werden mussen. Diese Skript bietet auch die Moglichkeit

OST Wiki - https://polaris.astro.physik.uni-potsdam.de/wiki/

Last
update:
2024/09/19
05:55

de:praktikum:photometrie_python https://polaris.astro.physik.uni-potsdam.de/wiki/doku.php?id=de:praktikum:photometrie_python&rev=1726725355

neben den Sternen auch Isochronen zu plotten. Hierauf gehen wir weiter unten genauer ein.

Zunachst sollte allerdings das entsprechende Skript 3 plot cmd.py aus dem Verzeichnis
~/scripts/n2/ in das lokale Arbeitsverzeichnis kopiert werden. AnschieBend sollte noch der Names
des Sternhaufens (nameOfStarcluster) gesetzt werden sowie der Pfad zu der oben gespeicherten
Datei (CMDFileName) mit den Magnituden erganzt werden.

Das Skriptes 3 plot cmd.py kann wie folgt
python 3 plot cmd.py

ausgefuhrt werden. Als Ergebnis erhalt man eine PDF-Datei mit dem scheinbarem FHD. Die
Axenskalierung erfolgt automatisch. Da dies aufgrund von Ausreilern nicht immer ideal ist, sollte der
Plotbereich Uber die Variablen x_Range apparent und y Range apparent angepasst werden. An
dieser Stelle sind die Anfuhrungszeichen einfach durch die Axenbegrenzungen zu ersetzen, wie z.B.
X _Range apparent = [-0.5, 2].

L
#HH#H# Configuration: modify the file in this section

HHH

TS A A

Name of the star cluster
nameOfStarcluster = "NGC7789"

Name of CMD data file
CMDFileName = "output/cmd.dat"

#it#

Plot parameter

#

x _Range=[xRangeMin:xRangeMax] & y Range=[yRangeMin:yRangeMax]

-> x and y range to plot (change according to your data)

-> The plot range is automatically adjusted, if range is set to ""
Apparent CMD:

x_Range apparent=["",""]

y_Range apparent=["",""]

Absolute CMD:
X _Range absolute=["",6""]
y Range absolute=["",6""]

Hinweis: Neben diesen Einstellungen gibt es noch eine Reihe weiterer Konfigurationsmadglichkeiten,
auf die wir hier aber nicht weiter eingehen.

Rotung & absolute Magnituden

https://polaris.astro.physik.uni-potsdam.de/wiki/ Printed on 2026/01/11 21:07

2026/01/11 21:07 17/21 N2 - Photometrie eines offenen Sternhaufens

Beim Vergleich eures scheinbaren FHDs mit der Literatur wird euch allerdings auffallen, dass die
Hauptreihe verschoben scheint. Dieser Effekt entsteht durch die interstellare Materie, die sich auch
zwischen den Sternen unserer Milchstrasse befindet. Wie alle andere Materie auch, kann sie durch
Licht angeregt werden. Diese Energie gibt sie spater wieder ab, allerdings nicht auf derselben
Wellenlange, sondern niederenergetischer, also auf der roten Seite des Spektrum. Man spricht daher
bei diesem Effekt auch von Rétung, nicht zu verwechseln mit der Rotverschiebung:

$(B-V)_{0} = (B-V) - E_{(B-V)}$
$V_{0} =V-A_{V}$

Die Rotung wird mathematisch durch den Ausdruck $E_{(B-V)}$ beschrieben, den man auch als
Farbexzess bezeichnet. Er beschreibt exakt den Unterschied zwischen dem hier gemessenen $(B-V)$
und dem ungeroteten, urspringlichen Wert $(B-V) _{0}$. Die Rotung betrifft allerdings auch die
Ordinate, wo der Korrekturterm mit $A {V}$ bezeichnet wird. Allerdings sind A_{V} und $E_{(B-
V)}$ nicht unabhangig voneinander, sondern lassen sich mit R_V ineinander umrechnen:

$A_{V} = R V\cdot E_{(B-V)}$

In der Sonnenumgebung wird R_V oft auf 3.1 gesetzt (Seaton 1979). Damit muss also nur noch der
Wert fur $E_{(B-V)}$ bekannt sein, um die ndtigen Korrekturen komplett durchzufthren.
Entsprechende Werte findet ihr via Simbad Uber die mit einem Objekt assoziierten Paper
(Veroffentlichungen) oder direkt Uber Datenbanksuche bei VizieR. Vergesst in jedem Fall nicht, den
benutzten Wert und die genaue Quelle (d.h. in der Regel das direkt benutzte oder zu einem VizieR-
Eintrag gehorende Paper) in eurem Protokoll anzugeben.

Abschliellend sollten noch die scheinbaren Magnituden in absolute Magnituden konvertiert werden,
damit spater ein Vergleich mit Isochronen maglich ist. Hierfur muss das entsprechend Distanzmodul
oder die Entfernung des Sternhaufens aus Papern (Veréffentlichungen) herausgesucht werden und die
entsprechende Korrektur vorgenommen werden.

Absolutes FHD plotten

Nachdem das $E_{(B-V)}$ und die Entfernung bzw. das Distanzmodul flr den entsprechenden
Sternhaufen herausgesucht wurden, kdnnen diese bei den entsprechenden Variablen im Skript

3 plot cmd.py eingetragen werden. m M ist hierbei das Distanzmodul. Die Ubrigen Variablen
sollten selbsterklarend sein. Ist entweder m_M oder distance gegeben, wird von dem Skript neben
dem scheinbaren FHD auch das absolute FHD erstellt. Sollte es n6tig sein R_V anzupassen kann
auch dies vorgenommen werden.

EB-V of the cluster

eBV =0.
RV
RV = 3.1

Give either distance modulus of the cluster or the distance in kpc
mM="'7?"

distance = '?'

OST Wiki - https://polaris.astro.physik.uni-potsdam.de/wiki/

http://viz-old.u-strasbg.fr/viz-bin/VizieR-2

Last
update:
2024/09/19
05:55

de:praktikum:photometrie_python https://polaris.astro.physik.uni-potsdam.de/wiki/doku.php?id=de:praktikum:photometrie_python&rev=1726725355

Hinweis: Neben diesen Einstellungen gibt es noch eine Reihe weiterer Konfigurationsmaglichkeiten,
auf die wir hier aber nicht weiter eingehen.

Isochronen plotten

Einige Isochronen sind bereits in der OST-Bibliothek enthalten, obwohl Iangst nicht alle und teilweise
sind diese auch nicht vollstandig. Von daher sollte, insbesondere wenn keine passenden Isochronen
gefunden wurden, selbststandig nach weiteren gesucht werden. Sternentwicklungsrechnungen
werden von einer Reihe von Arbeitsgruppen bzw. Wissenschaftlern durchfluhrt. Die daraus resultieren
Isochronen werden der wissenschaftlichen Gemeinschaft zumeist GUber Webportale zur Verfigung
gestellt und konnen von dort herunter geladen werden.

Bedauerlicherweise gibt es kein einheitliches Format fir Isochronen, was zur Folge hat, dass dem
Skript (3 _plot cmd.py) fur jeden neuen “Isochronentyp” bzw. jede neue “Isochronenquelle”
beigebracht werden muss diese zu lesen. Dies erfolgt Uber Dateien im sogenannte YAML-Format, in
denen die notige Konfiguration abgelegt ist. Fur die in der OST-Bibliothek enthalten Isochronen sind
diese Konfigurationsdateien bereits in dem Skriptverzeichnis zu finden. Ein lehre Template-Datei ist
dort ebenfalls vorhanden.

Im Skript erfolgt die Auswahl der jeweiligen “Isochronenquelle” Gber die Variable
isochrone configuration file. Hierist der Name bzw. der Pfad zu der jeweiligen YAML-Datei
einzutragen.

Keine Isochronen darstellen

Sollen keine Isochronen dargestellt werden muss isochrone _configuration file auf

gesetzt werden.

Far die PARCEC-Isochronen sieht die Konfigurationsdatei z.B. so aus:

PARCES isochrones (CMD 3.6)

Files

isochrones:

'~/isochrone database/parsec iso/3p6/solar Op2Gyr/iso parsec 0p2Gyr.dat'
isochrones:

'~/isochrone database/parsec _iso/3p6/solar Op5Gyr/iso parsec 0Op5Gyr.dat’
isochrones:

'~/isochrone database/parsec_iso/3p6/solar 1Gyr/iso parsec 1lGyr.dat'

Type
isochrone type: 'file'

https://polaris.astro.physik.uni-potsdam.de/wiki/ Printed on 2026/01/11 21:07

http://stev.oapd.inaf.it/cgi-bin/cmd

2026/01/11 21:07 19/21 N2 - Photometrie eines offenen Sternhaufens

Type of the filter used in CMD plots

Format:

‘filter name':

- column type (single or color)

- ID of the filter if the column type is color, e.g., if the filter
is

R and the color is V-R, the filter ID would be 1. If column-type
is

single, the ID will be 0.

- name of the second filter, in the example above it would be V. If
column-type is single, the name can be set to '-'.

isochrone column_ type:

IUI:
‘single’
-0
|B|.
‘single’
-0
|V|.
- 'single’
-0
IRI:
- 'single’
-0

ID of the columns in the isochrone data file containing the magnitudes
and the age
isochrone column:

‘U': 29
'‘B': 30
'V': 31
'‘R': 32
‘AGE': 3

Keyword to identify a new isochrone
isochrone keyword: '# Zini'

Logarithmic age
isochrone log age: true

Plot legend for isochrones?
isochrone legend: true

isochrones verweist auf die Datei mit den Isochronen. Hier ist isochrone_ type auf file gesetzt,
was dem Skript sagt, dass alle Isochronen in einer Datei zu finden sind. Eine Alternative ist
directory. In diesem Fall erwartet das Skript, dass die Isochronen in einzelnen Dateien in einem
bestimmten Verzeichnis zu finden sind und dass die Variable isochrones auf dieses Verzeichnis
zeigt. Mit isochrone column kann man die gewinschten Spaltennummern angeben.

OST Wiki - https://polaris.astro.physik.uni-potsdam.de/wiki/

Last
update:
2024/09/19
05:55

de:praktikum:photometrie_python https://polaris.astro.physik.uni-potsdam.de/wiki/doku.php?id=de:praktikum:photometrie_python&rev=1726725355

isochrone_column_type gibt an, ob die GroBen als Farben oder als “einzelne” Magnituden
angegeben werden. Weitere Informationen findet man in der obigen Formatbeschreibung. Die
grundlegenden Optionen sind hier color und single. Mit isochrone log age kann man
angeben, ob die Werte in der Altersspalte logarithmiert sind oder nicht. Man kann zwischen True und
False wahlen. Wenn sich die Isochronen alle in einer Datei befinden, benétigt das Skript ein
Schlusselwort, um zu erkennen, wann eine Isochrone endet und die nachste beginnt. Dies kann mit
der Variablen isochrone_keyword angegeben werden. Schlieflich kann man entscheiden, ob eine
Legende flr die Isochronen gezeichnet werden soll. Dies wird durch die Variable isochrone legend
gesteuert.

Tip: Zumeist gibt es Isochronen aus einer Quelle in unterschiedlichen zeitlichen Auflosungen und fur
unterschiedliche Metallizitaten. Diese finden sich dann in der Regel in anderen Dateien bzw. Ordnern,
je nachdem was fur isochrone_ type gesetzt werden muss. Es kann sich also lohnen, in der
Datenbank nachzuschauen und den Eintrag fir isochrones anzupassen.

Hinweis: Ein paar zusatzliche Informationen zu den einzelnen Variablen findet sich noch im YAML-
Template.

Protokoll

Es ist ein Ubliches Protokoll einzureichen. Eine allgemeine Ubersicht (iber den erforderlichen Aufbau
und Inhalt findet man hier.

Fir diesen Versuch sollte im theoretischen Teil des Protokolls ein Uberblick Gber offene und
kugelformige Sternhaufen mit Schwerpunkt auf dem beobachteten Typ und dessen Abgrenzung zu
anderen Ansammlungen und Gruppen von Sternen beschreiben werden. Erlautern Sie was ein
Hertzsprung-Russell-Diagramme (HRD) und was ein Farb-Helligkeits-Diagramme (FHD) ist und wie
sich diese beiden Typen unterscheiden. Legen Sie des Weiteren Kurz die Entwicklung von Sternen
unterschiedlicher Masse im Rahmen eines HRD da und erldutern Sie die Konzepte der Isochronen und
des Abknickpunktes und wie man damit das Alter eines Sternhaufens schatzt.

Beschreiben Sie im Methodenteil die Beobachtungen und die Datenreduktion, heben Sie Punkte
hervor, die von der allgemeinen Beschreibung hier abweichen, und fuhren Sie alle Parameter auf, die
Sie fur die Extraktion gesetzt haben. Fugen Sie aullerdem alle Diagramme der Datenreduktion in den
Bericht ein (einige wenige im Text, die meisten im Anhang). Geben Sie auch alle Parameter fur
Rétung, Extinktion und Entfernung an, die Sie aus der Literatur Ubernommen haben.

Im Ergebnisteil werden die CMDs des Sternhaufens dargestellt und die darin beobachtbaren Merkmale
beschrieben.

Die Analyse der CMDs enthalt die Schatzung des Haufenalters auf der Grundlage des Abbiegepunkts
und einer Isochronenanpassung.

Diskutieren Sie schliel8lich Ihre Ergebnisse. Stellen Sie lhre Ergebnisse in einen groReren
Zusammenhang und nehmen Sie, wenn moglich, einen Literaturvergleich vor (z. B. fir das Alter des
Haufens). Dazu gehdrt auch, dass Sie mogliche Probleme mit den Daten, der Datenreduktion oder der
Analyse (insbesondere der Isochronenanpassung) und maogliche Losungen dafur aufzeigen. Gibt es
Ungereimtheiten? Sehen Sie spezifische und offensichtliche Merkmale in der CMD, die Sie nicht
erklaren kénnen, die nicht Ihren Erwartungen entsprechen?

https://polaris.astro.physik.uni-potsdam.de/wiki/ Printed on 2026/01/11 21:07

https://polaris.astro.physik.uni-potsdam.de/wiki/doku.php?id=de:praktikum:protocol

2026/01/11 21:07 21/21 N2 - Photometrie eines offenen Sternhaufens

Hinweis: Aufgrund der Plots und Bilder passt das Protokoll méglicherweise nicht in einen E-Mail-
Anhang. Sie kénnen Ihr Protokoll auf das Universitats-Cloud-System (BoxUP) hochladen oder alternativ
auf den Auswerterecher des Praktikums ablegen und uns den Pfad schicken.

Ubersicht: Praktikum

From:
https://polaris.astro.physik.uni-potsdam.de/wiki/ - OST Wiki

Permanent link:
https://polaris.astro.physik.uni-potsdam.de/wiki/doku.php?id=de:praktikum:photometrie_python&rev=1726725355 %

Last update: 2024/09/19 05:55

OST Wiki - https://polaris.astro.physik.uni-potsdam.de/wiki/

https://boxup.uni-potsdam.de/index.php/login
https://polaris.astro.physik.uni-potsdam.de/wiki/doku.php?id=de:praktikum:index
https://polaris.astro.physik.uni-potsdam.de/wiki/
https://polaris.astro.physik.uni-potsdam.de/wiki/doku.php?id=de:praktikum:photometrie_python&rev=1726725355

	N2 - Photometrie eines offenen Sternhaufens
	Aufgabe
	Beobachtung
	Datenreduktion
	Vorbereitungen
	Überblick verschaffen - Bilder ansehen
	Pipeline installieren

	Reduktions-Pipeline: Darkframes, Flatfields und Bildstacking

	Datenauswertung mit Python
	Definieren einiger Variablen
	Einlesen der Bilder
	World Coordinate System
	Identifikation der Sterne
	Finden der Sterne
	Gefundenen Sterne prüfen
	Aufbereiten der Extraktionsergebnisse
	Kreuzkorrelation und Sortierung der Ergebnisse
	Umrechnung der Flüsse in Magnituden

	Kalibrierung
	Download Kalirationsdaten
	Kreuzkorrelation mit den extrahierten Daten
	Magnitudenkalibrierung
	Speichern der Ergebnisse

	Nachbearbeitung
	FHDs
	Scheinbares FHD plotten
	Rötung & absolute Magnituden
	Absolutes FHD plotten
	Isochronen plotten

	Protokoll

