
2026/01/17 15:57 1/21 N2 - Photometrie eines offenen Sternhaufens

OST Wiki - https://141.89.178.218/wiki/

N2 - Photometrie eines offenen Sternhaufens

Hinweis: Dieser Artikel schildert die moderne Auswertung des N2-Versuchs mithilfe eines fast
vollautomatischen Python-Skripts für die Reduktion von Flatfields und Darkframes sowie die Addition
und Ausrichtung der Sternhaufenaufnahmen. Die klassische Version, bei der die Verschiebungen von
Hand ausgemessen und manuell in eine Routine eingegeben werden, wird im Artikel Photometrie
eines offenen Sternhaufens (klassisch) beschrieben. Alternativ gibt es auch noch eine
halbautomatische Version auf Basis von GDL: Photometrie eines offenen Sternhaufens (GDL).

Aufgabe

Photometrieren sie zwei offene Sternhaufen und fertigen sie Farben-Helligkeits-Diagramme (englisch:
color magnitude diagram) dieser Haufen an. Ziel der Arbeit ist die Altersbestimmung (Abschätzung)
der beobachteten Sternhaufen. Zur Suche nach geeigneten Sternhaufen kann u.a. Simbad genutzt
werden - eine Hilfe zur Parametersuche von Simbad gibt es hier.

Kriterien, die die Sternhaufen erfüllen müssen, sind:

Eine hohe Zahl an Sternen im Sichtfeld, mindestens 100 Sterne sollten im Haufen vorhanden
sein.
Eine Sterndichte die nicht so hoch ist, dass die Beugungsscheibchen der Sternen miteinander
verschmelzen.
Ein großer Teil des Sternhaufens sollte im Sichtfeld der Kamera sein.
Der Haufen sollte nicht zu klein sein.
Es sollten keine zu starken Helligkeitsunterschiede zwischen den einzelnen Sternen im Haufen
bestehen.

Gutes Beispiel Schlechte Beispiele

https://141.89.178.218/wiki/doku.php?id=de:praktikum:photometrie-klassisch
https://141.89.178.218/wiki/doku.php?id=de:praktikum:photometrie-klassisch
https://141.89.178.218/wiki/doku.php?id=de:praktikum:photometrie
http://simbad.u-strasbg.fr/simbad/
https://141.89.178.218/wiki/doku.php?id=de:etc:simbad
https://141.89.178.218/wiki/doku.php?id=de:ost:ccds:grunddaten#basic_data
https://141.89.178.218/wiki/lib/exe/detail.php?id=de%3Apraktikum%3Aphotometrie_python&media=en:labcourse:n2:ngc7789_dss2.jpeg
https://141.89.178.218/wiki/lib/exe/detail.php?id=de%3Apraktikum%3Aphotometrie_python&media=en:labcourse:n2:ngc2281_dss2.jpeg
https://141.89.178.218/wiki/lib/exe/detail.php?id=de%3Apraktikum%3Aphotometrie_python&media=en:labcourse:n2:m34_dss2.jpeg

Last update: 2025/07/31
10:09 de:praktikum:photometrie_python https://141.89.178.218/wiki/doku.php?id=de:praktikum:photometrie_python

https://141.89.178.218/wiki/ Printed on 2026/01/17 15:57

Beobachtung

Der Versuch erfordert eine Nachtbeobachtung am OST der Uni Potsdam (alternativ auch am 70cm-
Teleskop des AIP). Zur Vorbereitung sollte die Checkliste: Nachtbeobachtung beachtet werden.

Für die spätere Datenreduktion müssen neben den eigentlichen Aufnahmen der Sternhaufen noch
Flatfields und Darks aufgenommen werden. Bias-Aufnahmen (mit null Belichtungszeit) sind nicht
erforderlich, wenn zu jedem Set an Sternhaufenaufnahmen und Flats auch Darks mit den gleichen
Belichtungszeiten erstellt werden. Am OST können die Flatfields nach der Beobachtung mit einer
Flatfielfolie aufgenommen werden. Sollte am AIP beobachtet werden, ist es empfehlenswert die
Fladsfields bereits in der Dämmerung (oder gegen eine weiße gleichmäßig beleuchtete Wand)
aufzunehmen. In diesem Fall sind ebenfalls Bias-Aufnahmen erforderlich, die bei geschlossener
Abdeckung zu machen sind. Auf jeden Fall sollten, bei absoluter Dunkelheit und geschlossenen
Abdeckungen, die bereits erwähnten Darkframes aufgenommen werden. Zur Rauschminimierung
sollte jedes Set an Darks und Flats aus mindestens 30 Einzelaufnahmen bestehen.

Nach Eintritt der Dunkelheit werden dann die Aufnahmen der Sternhaufen erstellt. Um eine
ausreichende Zahl an Counts auch von leuchtschwächere Sterne zu erhalten, sollten die Aufnahmen
genügend lang sein. Je nach verwendeter Kamera und beobachtetem Objekt kann diese Zeitspanne
für Einzelaufnahmen zwischen 20 Sekunden und etlichen Minuten liegen. Insbesondere wenn auch
hellere Objekte im Gesichtsfeld sind oder bei unzureichender Genauigkeit der Nachführung bietet es
sich an mehrere Aufnahmen zu machen und diese später aufzuaddieren. Bei dem in Potsdam
typischer Weise vorherschendem Seeing, können die aktuell verwendeten Kameras darüber hinaus
zumeist mit einem 2×2-Binning oder 3×3-Binning betrieben werden, um so das Signal-Rausch-
Verhältnisis noch weiter zu steigern. In jedem Fall sollte für diesen Versuch pro Filter eine
Gesamtbelichtungszeit von mindestens 40 Minuten erreicht werden.

Datenreduktion

Vorbereitungen

Überblick verschaffen - Bilder ansehen

Als erstes steht das Einloggen im Praktikumspool an. Anschließend folgt das Kopieren der
Beobachtungsdaten (FIT-Files), inklusive Flatfield- und Bias/Darkframe-Aufnahmen aus dem
Verzeichnis ~/data/<datum> ins eigene Verzeichnis ~/data_reduction/. Es gibt verschiedene
Tools, um die im FIT-Format abgelegten zweidimensionalen CCD-Bilder (Images) zu betrachten.
Beispielsweise mittels ds9:

 ds9 filename.fit

öffnet das Bild filename.fit mit ds9. Nach dem Öffnen einer Aufnahme, kann man durch Bewegen
des Cursors bei gedrückter rechter Maustaste die Helligkeit und den Kontrast variieren. Weitere
Optionen (Zoom, Falschfarbendarstellungen, Drehen, Spiegeln usw.) sind per Buttons zu erreichen.
Die Koordinaten der aktuellen Cursor-Position werden links oben angezeigt. Man kann auch mehrere
Bilder gleichzeitig öffnen (Buttons Frame → new frame, dann weiteres File mit File → open öffnen).

https://141.89.178.218/wiki/doku.php?id=de:ost:ccds:ccdops#binning
https://141.89.178.218/wiki/doku.php?id=de:ost:ccds:ccdops#binning
https://141.89.178.218/wiki/doku.php?id=de:praktikum:zugang

2026/01/17 15:57 3/21 N2 - Photometrie eines offenen Sternhaufens

OST Wiki - https://141.89.178.218/wiki/

Mit der Blink-Option (Buttons: Frame → blink) kann man mehrere Bilder besonders gut vergleichen.

Alternativ können alle Bilder gleichzeitig geöffnet werden. Dazu wird

 ds9 *.fit

eingeben (dies ist jedoch nicht für ein große Anzahl an Dateien geeignet). In ds9 können die Frames
wie oben betrachtet werden oder jeder Frame einzeln hintereinander (Button Frame → Single
Frame). Dabei kann zwischen den Frames durch Drücken der Tabulatortaste umgeschaltet werden.

Es sind die brauchbaren Beobachtungen für die weitere Bearbeitung auszuwählen, in denen die
Sterne als runde Scheibchen zu sehen sind. Bilder mit ovalförmigen Sternen sind nicht zu verwenden.

Pipeline installieren

Für die Datenreduktion und -analyse werden einige Module aus der OST-Photometrie-Pipeline
benötigt. Python-Module sollten immer in einer virtuellen Umgebung installiert werden, da dies
Abhängigkeitsprobleme reduziert. Eine virtuelle Umgebung kann über

 mkvirtualenv ost_photometry

angelegt werden. Die virtuelle Umgebung haben wir auf diese Weise auch gleich den Namen
ost_photometry gegeben. Das wir uns in der virtuellen Umgebung befinden lässt sich an dem
String '(ost_photometry)' erkennen, der jetzt jeder Terminalzeile vorausgestellt wird. über das
Kommando

 deactivate

kann die virtuelle Umgebung verlassen werden. Möchte man sich wieder verbinden kann dies über

 workon ost_photometry

erfolgen. Dies ist auch nötig wenn man sich, z.B. nach einer Unterbrechung der Arbeit, erneut mit
columba verbindet und die Datenauswertung fortsetzen möchte.

Die OST-Photometrie-Pipeline kann anschließend in dem terminal mittels pip wie folgt installiert
werden kann:

 pip install ost_photometry

Alle benötigten Abhängigkeiten werden auf diese Weise ebenfalls installiert.

Reduktions-Pipeline: Darkframes, Flatfields und Bildstacking

Um auch mit einer größeren Menge von Daten zurecht zu kommen, gibt es eine Python-Routine, die
pro Filter die Korrekturen für Darkframe und Flatfield durchführt, anschließend die Bilder pro Filter
aufaddiert und zueinander ausrichtet. Die Routine nimmt keine Qualitätskontrolle der Bilder vor,
unbrauchbare Beobachtungen müssen also auf jeden Fall vorher aussortiert werden, sonnst kann es

Last update: 2025/07/31
10:09 de:praktikum:photometrie_python https://141.89.178.218/wiki/doku.php?id=de:praktikum:photometrie_python

https://141.89.178.218/wiki/ Printed on 2026/01/17 15:57

zu Problemen bei der Ausrichtung kommen.

Man kopiert sich zunächst das Python-Skript 1_add_images.py aus dem Verzeichnis
~/scripts/n2/ in sein lokales Arbeitsverzeichnis. Danach sollte man diese mit einem beliebigen
Texteditor öffnen, um die Pfadangaben für die Bilder entsprechend anzupassen. Um eine größere
Menge von Bildern bequem einlesen und verifizieren zu können, erwartet das Programm eine
Trennung der Daten in verschiedene Unterverzeichnisse (Variablen: bias, darks, flats, images).
Es sollte jeweils ein Verzeichnis für die Aufnahmen des Sternhaufens, der Flatfields und der
Darkframes existiere. Eine mögliche Verzeichnisstruktur wäre:

/bias/
/darks/
/flats/
/images/

Das Python-Skript erkennt automatisch die verwendeten Filter und Belichtungszeiten. Darauf
aufbauend ordnet sowie klassifiziert es die Dateien automatisch ohne das weiteres Zutun nötig ist. Ist
man sich sicher, dass alle FIT-Header Schlüsselwörter korrekt gesetzt sind können alle Datei
versuchsweise auch in einem einzigen Verzeichnis abgelegt werden. In diesem Fall muss in dem
Skript nur der Pfad raw_files gesetzt werden. Anderenfalls müssen die Pfade zu den Unterordnern
bei den entsprechenden Variablen angegeben werden.

Konfigurationsbereich von 1_add_images.py:

########################## Individual folders ############################
Path to the bias -- If set to '?', bias exposures are not used.
bias: str = '?'

Path to the darks
darks: str = '?'

Path to the flats
flats: str = '?'

Path to the images
images: str = '?'

####################### Simple folder structure ##########################
raw_files: str = '?'

Wurden die Pfandangaben und der Name des Sternhaufens angepasst, kann anschließend das Skript
mittels

 python 1_add_images.py

ausgeführt werden.

Die Ergebnisse liegen in einem neuen Unterverzeichnis namens output.

2026/01/17 15:57 5/21 N2 - Photometrie eines offenen Sternhaufens

OST Wiki - https://141.89.178.218/wiki/

Datenauswertung mit Python

Es empfiehlt sich, alle folgende Schritte nicht auf der Kommandozeile von Python auszuführen,
sondern ein kleines Skript auswertung.py (oder jeden anderen Namens) zu schreiben. Hierzu die
gewünschten Programmdatei mittels eines Texteditors (im folgenden Fall Kate) öffnen:

kate auswertung.py &

Am den Beginn des Python-Skripts werden erst einmal die benötigten Module mit hilfreichem Code
eingebunden. In unserem Fall sind das Numpy, einige Astropymodule, Astroquery sowie einige Teile
unserer OST-Bibliothek:

 import numpy as np

 from astropy.coordinates import SkyCoord, matching
 import astropy.units as u
 from astropy.table import Table

 from astroquery.vizier import Vizier

 from ost_photometry.analyze.analyze import main_extract
 from ost_photometry.analyze.plots import starmap, scatter
 from ost_photometry.utilities import (
 find_wcs_astrometry,
 Image,
)
 from ost_photometry.analyze.utilities import (
 clear_duplicates,
)

 import warnings
 warnings.filterwarnings('ignore')

Über die letzten zwei Zeilen werden noch einige Warnungen abgeschaltet, die die Konsolenausgabe
unnötig überfrachten.

Definieren einiger Variablen

Als nächstes sollten einige Variablen definiert werden. Dies sollten wenigsten der Name des
Sternhaufens (name), das Verzeichnis in dem die Ergebnisse später abgelegt werden (out_path)
sowie die Pfade (V_path und B_path) zu den beiden über die obige Pipeline aufaddierten und
reduzierten Aufnahmen des Sternhaufens in den betrachteten Filtern (hier V und B) sein.

 # Cluster name (recognizable by Simbad/Vizier)
 name = 'NGC7789'

 # Directory to save the data
 out_path='output/'

Last update: 2025/07/31
10:09 de:praktikum:photometrie_python https://141.89.178.218/wiki/doku.php?id=de:praktikum:photometrie_python

https://141.89.178.218/wiki/ Printed on 2026/01/17 15:57

 # Images
 V_path = 'output/combined_filter_V.fit'
 B_path = 'output/combined_filter_B.fit'

Hinweis: Die hier und im weiteren angegeben Variablennamen sind nur beispielhaft und können durch
jede beliebige andere Bezeichnung ersetzt werden.

Hinweis: Liegen die Bilder nicht in einem Unterverzeichnis des aktuellen Verzeichnisses, kann mittels
../ der Pfad auch auf jeweils auf die nächsthöhere Ebene verweisen.

Einlesen der Bilder

Wir öffnen die FIT-Dateien mit Aufnahmen mittels der Funktion image, die über die OST-Bibliothek
bereit gestellt wird. Dies hat den Vorteil, dass wir uns nicht um die Details des Einleseprozesses
kümmern müssen und gleichzeitig für jedes Bild ein Python-Objekt zur Verfügung steht, in dem die
Ergebnisse der folgenden Schritte sortiert abgelegt werden können. Die image-Funktion hat folgende
Argumente: 1. Index des Bildes (kann hier auf 0 gesetzt werden), 2. Filterbezeichnung, 3. Pfad zur
Bilddatei und 4. Pfad zum Output-Verzeichnis:

 # Load images
 V_image = Image(0, 'V', V_path, out_path)
 B_image = Image(0, 'B', B_path, out_path)

World Coordinate System

Die vom OST erstellten Aufnahmen werden in der Regel ohne ein sogenanntes WCS ausgeliefert. WCS
steht für World Coordinate System und ermöglicht es jedem Pixel im Bild eigene Himmelskoordinaten
zuzuweisen. In ds9 werden diese dann z.B. auch beim zeigen mit dem Mauszeiger auf bestimmten
Pixel bzw. auf bestimmte Objekte in dem Koordinatenfenster von ds9 angezeigt. Dies ist sehr hilfreich
wenn man z.B. die Positionen von Sternen im eigen Bild mit denen in Sternenkatalogen abgleichen

will. Dies könnte bei der späteren Kalibrierung der Sternmagnituden durchaus hilfreich sein .

Mittels der Funktion find_wcs_astrometry kann die Bestimmung des WCS gestartet werden:

 # Find the WCS solution for the images
 find_wcs_astrometry(V_image)
 find_wcs_astrometry(B_image)

Wurde eine WCS-Lösung gefunden wird auf der Kommandozeile in grün

 WCS solution found :)

ausgegeben.

2026/01/17 15:57 7/21 N2 - Photometrie eines offenen Sternhaufens

OST Wiki - https://141.89.178.218/wiki/

Identifikation der Sterne

Finden der Sterne

Die Identifikation der Sterne in den beiden Bildern erfolgt mittels der Funktion main_extract. Diese
Funktion nimmt als erstes Argument wiederum das image-Objekt. Als optionales Argument kann dann
noch die Extraaktionsmethode ausgewählt werden (photometry). Hier spezifizieren wir 'APER', und
wählen so Apertur-Photometrie aus, bei der der Fluss der einzelnen Objekte und der zugehörigen
Himmelshintergründe innerhalb einer fest definierten (hier kreis- bzw. ringförmigen) Apertur
ausgelesen wird. Um diese Apertur zu spezifizieren geben wir noch den Radius für die kreisförmige
Objektapertur (rstars) sowie die beiden Radien für die ringförmige Hintergrundapertur (rbg_in und
rbg_out) an. Bewährt haben sich hier 4 sowie 7 und 10. Die Radien sind jeweils in Bogensekunden.

 # Extract objects
 main_extract(
 V_image,
 photometry_extraction_method='APER',
 radius_aperture=4.,
 inner_annulus_radius=7.,
 outer_annulus_radius=10.,
)
 main_extract(
 B_image,
 photometry_extraction_method='APER',
 radius_aperture=4.,
 inner_annulus_radius=7.,
 outer_annulus_radius=10.
)

Zusätzlich zu den Sternkoordinaten (in Pixel) speichert main_extract auch alle extrahierten Flüsse
automatisch in den image-Objekten.

Gefundenen Sterne prüfen

Die im vorherigen Schritt ausgeführte Funktion main_extract hat die schöne Eigenschaft, dass sie
die identifizierten Sterne auf einer sogenannten “Starmap” kennzeichnet. Diese kann genutzt werden,
um zu prüfen, welche und im Endeffekt auch ob genügend Sterne gefunden wurden. Die Starmaps
befinden sich im Ausgabeverzeichnis (Variable: out_path) und dort im Unterverzeichnis starmaps.
Sollten auf der einen Seite nicht genügend Sterne identifiziert worden sein oder auf der anderen Seite
neben Sternen auch Rauschen fälschlicherweise als Sterne erkannt worden sein, dann sollte im Aufruf
von main_extract der sigma-Parameter angepasst werden.

Aufbereiten der Extraktionsergebnisse

Für die weiteren Schritte benötigen wir die extrahierten Flüsse und die Sternposition am Besten in
Form von Astropy-Tabellen bzw. Spalten aus diesen. Die Tabellen mit den Ergebnissen erhalten wir
mittels:

Last update: 2025/07/31
10:09 de:praktikum:photometrie_python https://141.89.178.218/wiki/doku.php?id=de:praktikum:photometrie_python

https://141.89.178.218/wiki/ Printed on 2026/01/17 15:57

 # Get table
 photo_V = V_image.photometry
 photo_B = B_image.photometry

Aus diesen lassen sich wiederum einfach die bestimmten Sternpositionen in Pixel extrahieren:

 x_V = photo_V['x_fit']
 y_V = photo_V['y_fit']

sowie

 x_B = photo_B['x_fit']
 y_B = photo_B['y_fit']

Kreuzkorrelation und Sortierung der Ergebnisse

Nun müssen diejenigen Sterne herausgesucht werden, die in beiden Spektralbereichen/Filtern
identifiziert worden sind. Dies geschieht mittels des astropy.coordinates-Paketes, bzw. den über
diese Paket zur Verfügung gestellten Korrelations-Funktionen für Datensätze. Da diese Funktionen
nicht auf Pixelkoordinaten sondern auf Basis von Himmelskoordinaten arbeiten, müssen wir unsere
zuvor bestimmten Pixelkoordinaten noch in ein geeignet Koordinatensystem umrechnen. Hier ist es
zum ersten Mal nützlich, dass wir zuvor das WCS bestimmt haben.

Als erstes legen wir uns SkyCoord-Objekte für jeden der beiden Datensätze an. Diese Objekte, wenn
sie einmal definiert sind, erlauben die Ausgabe der Koordinaten in einer Vielzahl von bereits
vordefinierten Koordinatensystem. Darüber hinaus, und das ist noch praktischer, werden diese
Objekte auch als Argument von einer Reihe von Astropy-Funktionen und -Klassen akzeptiert. Aus
diesem Grund braucht man sich in der Regel keine weiteren Sorgen darüber machen, in welchem
Koordinatensytem man gerade eigentlich arbeitet, da dies alles intern von Astropy geregelt wird. Wir
definieren unsere SkyCoord-Objekte über die Option .from_pixel(), welches es uns erlaubt diese
direkt auf Basis der Pixelkoordinaten und des zuvor bestimmten WCS (welches wir dem image-Objekt
entnehmen können) zu definieren.

 # Create SkyCoord objects
 coords_V = SkyCoord.from_pixel(x_V, y_V, V_image.wcs)
 coords_B = SkyCoord.from_pixel(x_B, y_B, B_image.wcs)

Diese beiden SkyCoord-Objekte können dann mittels der Funktion search_around_sky
miteinander korreliert werden. Neben den beiden SkyCoord-Objekten benötigt diese Funktion als
drittes Argument noch die erlaubte Toleranz in den Koordinaten (unter derer zwei Objekte aus beiden
Datensatz noch als das Gleiche erkannt werden). In unserem Fall wählen wir großzügige 2
Bogensekunden. Die Einheit wird hier über das astropy.units-Paket definiert, dass wir oben unter
der Abkürzung u geladen haben.

 # Correlate results from both images
 id_V, id_B, d2, _ = matching.search_around_sky(coords_V, coords_B,
2.*u.arcsec)

2026/01/17 15:57 9/21 N2 - Photometrie eines offenen Sternhaufens

OST Wiki - https://141.89.178.218/wiki/

Die erfolgreich zugeordneten Sterne bekommen jeweils einen Eintrag in id_V, id_B und d2. Diese
beiden ersten Listen (genauer gesagt Numpy arrays) enthalten die Indexwerte, die diese Sterne in
den ursprünglich unsortierten Datensätzen hatten. Das heißt wir können diese Indexwerte nutzen, um
die ursprünglichen Tabellen mit den Flüssen und Sternpositionen so zu sortieren, dass sie nur noch
Sterne enthalten die in beiden Aufnahmen detektiert wurden und das die Reihenfolge der Sterne in
beiden Datensätzen die Gleiche ist. Diese Zuordnung ist essentiell für das weitere Vorgehen.

Bevor dies jedoch geschehen kann, müssen noch potentielle Mehrfachidentifikationen aussortiert
werden. Es ist nämlich möglich, dass matching.search_around_sky() z.B. Objekt 3 aus
coords_V sowohl Objekt 2 als auch Objekt 4 aus coords_B zuordnet. Das Aussortieren dieser
Duplikate erfolgt mit:

 # Identify and remove duplicate indices
 id_V, d2, id_B = clear_duplicates(
 id_V,
 d2,
 id_B,
)
 id_B, _, id_V = clear_duplicates(
 id_B,
 d2,
 id_V,
)

Anschließend können die Tabellen mit den photometrischen Werten sortiert werden, indem die Arrays
mit den Indexwerten in die entsprechenden Tabellen eingesetzt werden. Auf diese Weise selektieren
und sortieren wir gleichzeitig die Sterne, die in den beiden Aufnahmen identifiziert wurden.

 # Sort table with extraction results and SkyCoord object
 photo_V_sort = photo_V[id_V]
 photo_B_sort = photo_B[id_B]

 coords_objs = coords_V[id_V]

Neben den beiden Tabellen mit den Extraaktionsergebnissen haben wir auch eines (welches ist egal)
der SkyCoord-Objekte sortiert. Dies wird uns im übernächsten Schritt noch von Nutzen sein.

Umrechnung der Flüsse in Magnituden

Da im folgenden in Magnituden gearbeitet wird, müssen die Flüsse entsprechend umgerechnet
werden. Die Umrechnung kann gleich auf Basis der zuvor extrahierten Tabellen erfolgen (die Flüsse
sind hier in der Spalte flux_fit abgelegt) bzw. die Magnituden können auch gleich als neue Spalte
den Tabellen hinzugefügt werden:

 # Calculate magnitudes
 photo_V_sort['mag'] = -2.5 * np.log10(photo_V_sort['flux_fit'])
 photo_B_sort['mag'] = -2.5 * np.log10(photo_B_sort['flux_fit'])

Man beachte, dass die Magnituden nur bis auf eine additive Konstante bestimmt sind, solange noch

Last update: 2025/07/31
10:09 de:praktikum:photometrie_python https://141.89.178.218/wiki/doku.php?id=de:praktikum:photometrie_python

https://141.89.178.218/wiki/ Printed on 2026/01/17 15:57

keine Eichung durchgeführt wurde.

Kalibrierung

Die Helligkeiten (Magnituden) sind bislang nur bis auf eine Verschiebung (additive Konstante, den
sogenannten Zeropoint) bestimmt. Die Eichung (Kalibration) stellt ohne Zugang zu einer Datenbank
mit Vergleichssternen ein erhebliches Problem dar. Glücklicherweise bietet die astronomische
Gemeinschaft solche Datenbanken an, die wir anzapfen können. Wir werden die VizieR-Datenbank
des Centre de Données astronomiques de Strasbourg benutzen bzw. unsere Kalibrationsdaten
von dort beziehen. Hierfür werden wir das astroquery-Paket und daraus das Vizier-Modul
benutzen.

Download Kalirationsdaten

Zuerst definieren wir den Katalog, auf den wir zugreifen wollen. In unserem Fall benutzen wir den
APASS-Katalog, der unter der ID II/336/apass9 läuft. Des Weiteren definieren wir die Spalten, die
wir benötigen. Wir beschränken uns hier auf die Spalten, die wir wirklich brauchen, um die
Downloadzeit gering zu halten. Die Spaltenbezeichnungen sind zum Teil Katalog spezifisch, sodass für
einen anderen Katalog unter Umständen andere Spaltenbezeichnungen zu benutzen sind.

 # Get calibration from Vizier
 catalog = 'II/336/apass9'
 columns = ['RAJ2000', 'DEJ2000', "Bmag", "Vmag", "e_Bmag", "e_Vmag"]

Anschließend definieren wir das Vizier-Objekt. Wir übergeben diesem die Katalog-ID, die
Spaltendefinition und setzen das sogenannte row_limit noch auf 10^6. Durch letzteres wird die
herunterzuladende Tabelle auf 10^6 Zeilen und somit das Downloadvolumen begrenzt. Dies machen
wir, um beim Download nicht in eine Zeitüberschreitung des Servers zu laufen.

 v = Vizier(columns=columns, row_limit=1e6, catalog=catalog)

Im nächsten Schritt können wir den Download ausführen. Hierbei nutzen wir die Funktion
.query_region. Dieser müssen wir noch die Koordinaten und die Größe des abzufragenden
Himmelsbereiches übergeben. Glücklicherweise ist beides bereits bekannt. Die Koordinaten kennen
wir aus den FIT-Header der Sternhaufenaufnahmen und für den Radius des abzufragenden Bereichs
nehmen wir einfach das Gesichtsfeld, was wir uns bereits oben ausgerechnet haben. Beide Größen
können wir z.B. dem V_image-Objekt entnehmen.

 calib_tbl = v.query_region(V_image.coordinates_image_center,
radius=V_image.field_of_view_x*u.arcmin)[0]

Die Tabelle calib_tbl enthält nun alle in dem APASS-Katalog enthaltenen Objekte mit ihren B- und
V-Magnituden, welche sich in unserem Gesichtsfeld befinden.

Aufgabe: Schränken Sie den heruntergeladenen APASS-Katalog auf alle Objekte im V-

2026/01/17 15:57 11/21 N2 - Photometrie eines offenen Sternhaufens

OST Wiki - https://141.89.178.218/wiki/

Magnitudenbereich von 10 bis 15 mag ein. Auf diese Weise wird sichergestellt, dass
potentiell über- als auch unterbelichtete Sterne in unseren Aufnahmen nicht für die
Kalibrierung verwendet werden.

Hinweis: Zur Bewältigung dieser Aufgabe kann es hilfreich sein, sich ein wenig mit
booleschen Masken, Vergleichsoperation und boolescher Logik zu befassen.

Alternativ zum APASS-Katalog kann der “Fourth U.S. Naval Observatory CCD Astrograph Catalog”
(UCAC4) zur Kalibrierung verwendet werden, der die ID I/322A/ hat.

Kreuzkorrelation mit den extrahierten Daten

Anschließend muss nun der heruntergeladene Katalog mit den oben extrahierten Sternkoordinaten
korreliert werden. Hierfür legen wir erneut ein SkyCoord-Objekt an. Diesmal für die
Kalibrationssterne. Anders als oben konstruieren wir das SkyCoord-Objekt diesmal direkt aus den
Rektaszension- und Deklinationskoordinaten, welche wir der Tabelle calib_tbl entnehmen können.
Die Rektaszensionswerte findet man in der Spalte RAJ2000, wohingegen die Deklinationswerte sich in
der Spalte DEJ2000 befinden. Des Weiteren müssen noch die Einheiten für die Koordinaten
angegeben werden. In unserem Fall sind das jeweils Grad (u.deg). Als letztes Argument (frame)
sollte noch das Koordinatensystem definiert werden. In unserem Fall müssen wir icrs angeben.

 # Set up SkyCoord object with position of the calibration objects
 coord_calib = SkyCoord(
 calib_tbl['RAJ2000'].data,
 calib_tbl['DEJ2000'].data,
 unit=(u.deg, u.deg),
 frame="icrs"
)

Wie bereits oben korrelieren wir auch hier die Kalibrationsdaten mit unseren Ergebnissen mittels
dersearch_around_sky-Funktion aus dem matching-Modul von Astropy. Als Argumente übergeben
wir das soeben definierte SkyCoord-Objekt für die Kalibrationssterne, das SkyCoord-
Objekt für die Sterne welche wir in beiden Filtern gefunden haben (coords_objs) sowie die
maximale Distanz zwischen Sternen in beiden Datensätzen unter derer diese noch als das selbe
Objekt erkannt werden.

 # Correlate extracted object position with calibration table
 ind_fit, ind_lit, d2, _ = matching.search_around_sky(
 coords_objs,
 coord_calib,
 2.*u.arcsec,
)

Wie ebenfalls oben beschrieben, müssen nun noch die Dubletten aussortiert werden:

 # Identify and remove duplicate indexes
 ind_fit, d2, ind_lit = clear_duplicates(
 ind_fit,

https://jakevdp.github.io/PythonDataScienceHandbook/02.06-boolean-arrays-and-masks.html

Last update: 2025/07/31
10:09 de:praktikum:photometrie_python https://141.89.178.218/wiki/doku.php?id=de:praktikum:photometrie_python

https://141.89.178.218/wiki/ Printed on 2026/01/17 15:57

 d2,
 ind_lit,
)
 ind_lit, _, ind_fit = clear_duplicates(
 ind_lit,
 d2,
 ind_fit,
)

Auf diese Weise erhalten wir wieder Indexwerte, die wir nutzen können, um die Kalibrationssterne
sowohl aus den Datensätzen für die beiden Filter als auch aus dem heruntergeladenen Katalog zu
selektieren:

 # Select data of the calibration stars
 photo_V_sort_calib = photo_V_sort[ind_fit]
 photo_B_sort_calib = photo_B_sort[ind_fit]

 # Select literature data of the calibration stars
 calib_tbl_sort = calib_tbl[ind_lit]

Magnitudenkalibrierung

Nun sind wir in der Lage die eigentliche Kalibrierung der Magnituden durchzuführen. Hierfür
berechnen wir den sogenannten Zeropoint, indem wir für die Kalibrationssterne in jeden der beiden
Filter unsere extrahierten Magnituden von den Magnituden aus dem heruntergeladenen Katalog
abziehen und anschließend mit der Funktion .ma.median aus dem Numpy-Modul über alle
Kalibrationssterne den Median bilden:

 # Calculate zero points
 ZP_V = np.ma.median(calib_tbl_sort['Vmag'] - photo_V_sort_calib['mag'])
 ZP_B = np.ma.median(calib_tbl_sort['Bmag'] - photo_B_sort_calib['mag'])

Anschließend müssen die berechneten Zeropoints noch zu den Magnituden der Sterne in den Tabellen
photo_V_sort und photo_B_sort addiert werden. Um die Übersichtlichkeit und Reproduzierbarkeit
zu gewährleisten sollten die kalibrierten Magnituden jeweils in einer eigene Spalte den Tabellen
hinzugefügt werden:

 # Calibrate magnitudes
 photo_V_sort['mag_cali'] = photo_V_sort['mag'] + ZP_V
 photo_B_sort['mag_cali'] = photo_B_sort['mag'] + ZP_B

Prüfen der Kalibrationssterne

Eine Möglichkeit, die Validität der Kalibrationssterne zu prüfen ist diese sich auf einer Starmap
darzustellen (ähnlich zu dem was die main_extract oben automatisch macht). In diesem Fall wollen
wir aber die heruntergeladenen Sternpositionen als auch die Sterne darstellen, die dann später auch
wirklich für die Kalibrierung verwendet wurden. Hierfür bietet die OST-Bibliothek eine geeignete
Funktion (starmap) an, die solche Plots erstellen kann. Diese Funktion kann über

2026/01/17 15:57 13/21 N2 - Photometrie eines offenen Sternhaufens

OST Wiki - https://141.89.178.218/wiki/

 from ost_photometry.analyze.plots import starmap

eingebunden werden. Da diese Funktion als Eingabe eine Astropy-Tabellen, mit den darzustellenden
Daten erwartet, müssen wir zuerst diese erstellen, bevor wir die Starmap plotten können. Die Position
der Kalibrationssterne liegen bisher nicht in Pixelkoordinaten vor, da wir diese Information von der
Simbad- bzw. Vizier-Datenbank bezogen haben. Daher müssen wir zuerst diese erzeugen. An dieser
Stelle ist es wieder praktisch, dass wir zuvor ein SkyCoord-Objekt für diese Sterne erzeugt haben.
Mittels .to_pixel() unter Angabe des WCS des Bildes lassen sich hieraus ganz einfach
Pixelkoordinaten erzeugen:

 # Calculate object positions in pixel coordinates
 x_cali, y_cali = coord_calib.to_pixel(V_image.wcs)

Anschließend können wir mit diesen Information die Tabelle erstellen:

 tbl_xy_cali_all = Table(
 names=['id','xcentroid', 'ycentroid'],
 data=[np.arange(0,len(y_cali)), x_cali, y_cali]
)

Das Ganze wiederholen wir jetzt noch einmal für das SkyCoord-Objekt, dass nur die Sterne enthält,
die sowohl in der Datenbank waren als auch auf beiden Aufnahmen (beide Filter) des Sternhaufens
identifiziert wurden:

 x_cali_s, y_cali_s = coords_objs.to_pixel(V_image.wcs)

 tbl_xy_cali_s = Table(
 names=['id','xcentroid', 'ycentroid'],
 data=[np.arange(0,len(y_cali_s)), x_cali_s, y_cali_s]
)

Daraufhin haben wir alles vorbereitet und können die Starmap plotten:

 starmap(
 out_path,
 V_image.get_data(),
 'V',
 tbl_xy_cali_all,
 label='Downloaded calibration stars',
 tbl_2=tbl_xy_cali_s,
 label_2='Identified calibration stars',
 rts='calibration',
)

Hierbei ist das erste Argument unser Ausgabeverzeichnis, das zweite Argument das eigentlich Bild
(als Numpy-Array), das dritte Argument die Filterbezeichnung, das vierte Argument die erste Tabelle,
label das Label zum ersten Datensatz, tbl_2 die zweite Tabelle, label_2 das Label zum zweiten
Datensatz und rts eine Beschreibung des Plots.

Alternativ kann man die Starmap auch direkt über pyplot aus dem matplotlib-Modul erstellen.

Last update: 2025/07/31
10:09 de:praktikum:photometrie_python https://141.89.178.218/wiki/doku.php?id=de:praktikum:photometrie_python

https://141.89.178.218/wiki/ Printed on 2026/01/17 15:57

Dies ist nicht viel aufwendiger bietet aber mehr Möglichkeiten zur Anpassung des Plots. Geladen wird
pyplot mittels:

 import matplotlib.pyplot as plt

Der “Grafikgrundstock” wird über

 fig = plt.figure(figsize=(20,9))

erstellt. Anschließend kann das eigentliche Bild geladen werden:

 plt.imshow(V_image, origin='lower')

image sind hierbei die eigentlichen Bilddaten und origin=lower stellt sicher, dass das mit dem
überplotten der Koordinaten auch klappt. Daraufhin können die Symbole, die die Sternposition
kennzeichnen geplottet werden:

 plt.scatter(x_positions, y_positions)

x_positions und y_positions sind hier die X- bzw Y-Sternpositionen in Pixel. .scatter bietet
eine Vielzahl an Konfigurationsmöglichkeiten wie z.B. die Auswahl des Symbols, Farbe, Linienstärke
und vieles vieles mehr. Diesbezüglich verweisen wir auf die vielfältigen Dokumentation und Tutorials
hierzu im Internet. Auch bezüglich Labels, Titel, Legenden und Achsenbeschriftungen lassen sich dort
mehr als genug Informationen finden. Über

 plt.savefig(filename)

lässt sich der Plot abspeichern. Hierbei ist filename der Dateiname bzw. der Pfad zur Datei.
Alternativ kann der Plot über

 plt.show()

auch direkt dargestellt werden. In diesem Fall muss aber unter Umständen das Backend geändert
werden bevor plt.show() aufgerufen wird:

 plt.switch_backend('TkAgg')

Am Ende des Plots sollte dieser mittels

 plt.close()

geschlossen werden.

Speichern der Ergebnisse

Ist die Kalibrierung erfolgt, sollten wir unsere extrahierten und kalibrierten Magnituden noch
abspeichern. Da die Tabellen photo_V_sort und photo_B_sort einige Daten enthält, die wir nicht
für die Erstellung des FHDs benötigen und wir diese der Übersichtlichkeit halber nicht mitspeichern

2026/01/17 15:57 15/21 N2 - Photometrie eines offenen Sternhaufens

OST Wiki - https://141.89.178.218/wiki/

wollen, erstellen wir uns eine neue Tabelle, die nur die relevanten Daten enthält. Die neue Tabelle
kann einfach mittels Table() angelegt werden. Anschließend fügen wir dieser Tabelle die für uns
relevanten Spalten aus den Tabellen photo_V_sort und photo_B_sort hinzu:

 # Create new table for the CMD
 results = Table()
 results['id'] = photo_V_sort['id']
 results['x'] = photo_V_sort['x_fit']
 results['y'] = photo_V_sort['y_fit']
 results['B [mag]'] = photo_B_sort['mag_cali']
 results['V [mag]'] = photo_V_sort['mag_cali']

Ist die neue Tabelle fertig befüllt, erlaubt es Astropy diese Tabelle sehr bequem über den Befehl
.write zu speichern. Es muss noch als erstes Argument der Pfand bzw. Dateinamen angegeben
werden, unter dem die Tabelle gespeichert werden soll. Des Weiteren spezifizieren wir noch das
Format format (wir wählen hier ascii) und setzen den Parameter overwrite auf True, sodass
falls wir das Skript mehrfach laufen lassen auch immer die aktuellen Daten in die Datei geschrieben
werden können.

 # Save table
 results.write(out_path + 'cmd.dat', format='ascii', overwrite=True)

Nachbearbeitung

Schaut man sich die Aufnahmen der Sternhaufen an wird man feststellen, das die Sternhaufen in der
Regel nur einen Teil des Gesichtsfeldes einnehmen. Zumeist wird dieser Bereich zwischen 30% und
60% des Gesichtsfeldes liegen. Wir beobachten also wahrscheinlich neben den Sternhaufen eine
ganze Reihe weiterer Sterne, sogenannter Feldsterne, die eigentlich nicht zu unserem Sternhaufen
gehören. Auch zwischen uns und dem Sternhaufen werden sich in der Regel einige Sterne befinden.
Da diese Sterne aller Wahrscheinlichkeit nach nicht zusammen mit dem zu untersuchenden
Sternhaufen entstanden sind werden diese Sterne unsere Ergebnisse in Bezug auf die
Altersbestimmung verfälschen bzw. diese schwieriger interpretierbar machen.

Aufgabe: Versuchen sie die Auswahl der Sterne so weit wie Möglich auf den eigentlichen
Sternhaufen zu begrenzen. Sie haben hierfür zwei Möglichkeiten, die alternativ oder
additiv angewendet werden können.

Schränken sie die Auswahl der Sterne auf z.B. 10 Bogenminuten um die zentralen1.
Koordinaten des Sternhaufens ein
Laden Sie, wie oben in der Kalibrierung vorgeführt, die Daten aus dem Gaia-2.
Archive (Katalog-ID: I/350/gaiaedr3) herunter und schauen Sie sich aus diesem
Datensatz insbesondere die Spalten bezüglich der Eigenbewegung der Sterne an.
Nutzen Sie diese Daten, um die Sternhaufenmitglieder zu selektieren.

Hinweis: Hilfreich ist es auf jeden Fall, sich Starmaps (wie unter dem Punkt “Prüfen der
Kalibrationssterne” beschrieben) oder ähnliche Plots zu erstellen, die einem bei der
Bewertung der Resultate helfen.

Last update: 2025/07/31
10:09 de:praktikum:photometrie_python https://141.89.178.218/wiki/doku.php?id=de:praktikum:photometrie_python

https://141.89.178.218/wiki/ Printed on 2026/01/17 15:57

FHDs

Scheinbares FHD plotten

Zur Erstellung des FHDs steht wiederum ein Python-Skript zur Verfügung, in dem nur ein paar Pfade
und wenige weitere Parameter angepasst werden müssen. Diese Skript bietet auch die Möglichkeit
neben den Sternen auch Isochronen zu plotten. Hierauf gehen wir weiter unten genauer ein.

Zunächst sollte allerdings das entsprechende Skript 3_plot_cmd.py aus dem Verzeichnis
~/scripts/n2/ in das lokale Arbeitsverzeichnis kopiert werden. Anschießend sollte noch der Names
des Sternhaufens (nameOfStarcluster) gesetzt werden sowie der Pfad zu der oben gespeicherten
Datei (CMDFileName) mit den Magnituden ergänzt werden.

Das Skriptes 3_plot_cmd.py kann wie folgt

 python 3_plot_cmd.py

ausgeführt werden. Als Ergebnis erhält man eine PDF-Datei mit dem scheinbarem FHD. Die
Axenskalierung erfolgt automatisch. Da dies aufgrund von Ausreißern nicht immer ideal ist, sollte der
Plotbereich über die Variablen x_Range_apparent und y_Range_apparent angepasst werden. An
dieser Stelle sind die Anführungszeichen einfach durch die Axenbegrenzungen zu ersetzen, wie z.B.
x_Range_apparent = [-0.5, 2].

##
 #### Configuration: modify the file in this section
####
##

 # Name of the star cluster
 nameOfStarcluster = "NGC7789"

 # Name of CMD data file
 CMDFileName = "output/cmd.dat"

 ###
 # Plot parameter
 #

 # x_Range=[xRangeMin:xRangeMax] & y_Range=[yRangeMin:yRangeMax]
 # -> x and y range to plot (change according to your data)
 # -> The plot range is automatically adjusted, if range is set to ""
 # Apparent CMD:
 x_Range_apparent=["",""]
 y_Range_apparent=["",""]

 # Absolute CMD:
 x_Range_absolute=["",""]
 y_Range_absolute=["",""]

2026/01/17 15:57 17/21 N2 - Photometrie eines offenen Sternhaufens

OST Wiki - https://141.89.178.218/wiki/

Hinweis: Neben diesen Einstellungen gibt es noch eine Reihe weiterer Konfigurationsmöglichkeiten,
auf die wir hier aber nicht weiter eingehen.

Rötung & absolute Magnituden

Beim Vergleich eures scheinbaren FHDs mit der Literatur wird euch allerdings auffallen, dass die
Hauptreihe verschoben scheint. Dieser Effekt entsteht durch die interstellare Materie, die sich auch
zwischen den Sternen unserer Milchstrasse befindet. Wie alle andere Materie auch, kann sie durch
Licht angeregt werden. Diese Energie gibt sie später wieder ab, allerdings nicht auf derselben
Wellenlänge, sondern niederenergetischer, also auf der roten Seite des Spektrum. Man spricht daher
bei diesem Effekt auch von Rötung, nicht zu verwechseln mit der Rotverschiebung:

$(B-V)_{0} = (B-V) - E_{(B-V)}$

$V_{0} = V - A_{V}$

Die Rötung wird mathematisch durch den Ausdruck $E_{(B-V)}$ beschrieben, den man auch als
Farbexzess bezeichnet. Er beschreibt exakt den Unterschied zwischen dem hier gemessenen $(B-V)$
und dem ungeröteten, ursprünglichen Wert $(B-V)_{0}$. Die Rötung betrifft allerdings auch die
Ordinate, wo der Korrekturterm mit A_{V} bezeichnet wird. Allerdings sind A_{V} und $E_{(B-
V)}$ nicht unabhängig voneinander, sondern lassen sich mit R_V ineinander umrechnen:

$A_{V} = R_V \cdot E_{(B-V)}$

In der Sonnenumgebung wird R_V oft auf 3.1 gesetzt (Seaton 1979). Damit muss also nur noch der
Wert für $E_{(B-V)}$ bekannt sein, um die nötigen Korrekturen komplett durchzuführen.
Entsprechende Werte findet ihr via Simbad über die mit einem Objekt assoziierten Paper
(Veröffentlichungen) oder direkt über Datenbanksuche bei VizieR. Vergesst in jedem Fall nicht, den
benutzten Wert und die genaue Quelle (d.h. in der Regel das direkt benutzte oder zu einem VizieR-
Eintrag gehörende Paper) in eurem Protokoll anzugeben.

Abschließend sollten noch die scheinbaren Magnituden in absolute Magnituden konvertiert werden,
damit später ein Vergleich mit Isochronen möglich ist. Hierfür muss das entsprechend Distanzmodul
oder die Entfernung des Sternhaufens aus Papern (Veröffentlichungen) herausgesucht werden und die
entsprechende Korrektur vorgenommen werden.

Absolutes FHD plotten

Nachdem das $E_{(B-V)}$ und die Entfernung bzw. das Distanzmodul für den entsprechenden
Sternhaufen herausgesucht wurden, können diese bei den entsprechenden Variablen im Skript
3_plot_cmd.py eingetragen werden. m_M ist hierbei das Distanzmodul. Die übrigen Variablen
sollten selbsterklärend sein. Ist entweder m_M oder distance gegeben, wird von dem Skript neben
dem scheinbaren FHD auch das absolute FHD erstellt. Sollte es nötig sein R_V anzupassen kann
auch dies vorgenommen werden.

 # EB-V of the cluster
 eB_V = 0.

 # R_V

http://viz-old.u-strasbg.fr/viz-bin/VizieR-2

Last update: 2025/07/31
10:09 de:praktikum:photometrie_python https://141.89.178.218/wiki/doku.php?id=de:praktikum:photometrie_python

https://141.89.178.218/wiki/ Printed on 2026/01/17 15:57

 RV = 3.1

 # Give either distance modulus of the cluster or the distance in kpc
 m_M = '?'

 distance = '?'

Hinweis: Neben diesen Einstellungen gibt es noch eine Reihe weiterer Konfigurationsmöglichkeiten,
auf die wir hier aber nicht weiter eingehen.

Isochronen plotten

Einige Isochronen sind bereits in der OST-Bibliothek enthalten, obwohl längst nicht alle und teilweise
sind diese auch nicht vollständig. Von daher sollte, insbesondere wenn keine passenden Isochronen
gefunden wurden, selbstständig nach weiteren gesucht werden. Sternentwicklungsrechnungen
werden von einer Reihe von Arbeitsgruppen bzw. Wissenschaftlern durchführt. Die daraus resultieren
Isochronen werden der wissenschaftlichen Gemeinschaft zumeist über Webportale zur Verfügung
gestellt und können von dort herunter geladen werden.

Bedauerlicherweise gibt es kein einheitliches Format für Isochronen, was zur Folge hat, dass dem
Skript (3_plot_cmd.py) für jeden neuen “Isochronentyp” bzw. jede neue “Isochronenquelle”
beigebracht werden muss diese zu lesen. Dies erfolgt über Dateien im sogenannte YAML-Format, in
denen die nötige Konfiguration abgelegt ist. Für die in der OST-Bibliothek enthalten Isochronen sind
diese Konfigurationsdateien bereits in dem Skriptverzeichnis zu finden. Ein lehre Template-Datei ist
dort ebenfalls vorhanden.

Im Skript erfolgt die Auswahl der jeweiligen “Isochronenquelle” über die Variable
isochrone_configuration_file. Hier ist der Name bzw. der Pfad zu der jeweiligen YAML-Datei
einzutragen.

Keine Isochronen darstellen

Sollen keine Isochronen dargestellt werden muss isochrone_configuration_file auf

 ""

gesetzt werden.

Für die PARCEC-Isochronen sieht die Konfigurationsdatei z.B. so aus:

 # PARCES isochrones (CMD 3.6)

 # Files
 # isochrones:
'~/isochrone_database/parsec_iso/3p6/solar_0p2Gyr/iso_parsec_0p2Gyr.dat'
 # isochrones:
'~/isochrone_database/parsec_iso/3p6/solar_0p5Gyr/iso_parsec_0p5Gyr.dat'

http://stev.oapd.inaf.it/cgi-bin/cmd

2026/01/17 15:57 19/21 N2 - Photometrie eines offenen Sternhaufens

OST Wiki - https://141.89.178.218/wiki/

 isochrones:
'~/isochrone_database/parsec_iso/3p6/solar_1Gyr/iso_parsec_1Gyr.dat'

 # Type
 isochrone_type: 'file'

 # Type of the filter used in CMD plots
 # Format:
 # 'filter name':
 # - column type (single or color)
 # - ID of the filter if the column type is color, e.g., if the filter
is
 # R and the color is V-R, the filter ID would be 1. If column-type
is
 # single, the ID will be 0.
 # - name of the second filter, in the example above it would be V. If
 # column-type is single, the name can be set to '-'.
 isochrone_column_type:
 'U':
 - 'single'
 - 0
 - '-'
 'B':
 - 'single'
 - 0
 - '-'
 'V':
 - 'single'
 - 0
 - '-'
 'R':
 - 'single'
 - 0
 - '-'
 # ID of the columns in the isochrone data file containing the magnitudes
 # and the age
 isochrone_column:
 'U': 29
 'B': 30
 'V': 31
 'R': 32
 'AGE': 3
 # Keyword to identify a new isochrone
 isochrone_keyword: '# Zini'

 # Logarithmic age
 isochrone_log_age: true

 # Plot legend for isochrones?
 isochrone_legend: true
 ...

Last update: 2025/07/31
10:09 de:praktikum:photometrie_python https://141.89.178.218/wiki/doku.php?id=de:praktikum:photometrie_python

https://141.89.178.218/wiki/ Printed on 2026/01/17 15:57

isochrones verweist auf die Datei mit den Isochronen. Hier ist isochrone_type auf file gesetzt,
was dem Skript sagt, dass alle Isochronen in einer Datei zu finden sind. Eine Alternative ist
directory. In diesem Fall erwartet das Skript, dass die Isochronen in einzelnen Dateien in einem
bestimmten Verzeichnis zu finden sind und dass die Variable isochrones auf dieses Verzeichnis
zeigt. Mit isochrone_column kann man die gewünschten Spaltennummern angeben.
isochrone_column_type gibt an, ob die Größen als Farben oder als “einzelne” Magnituden
angegeben werden. Weitere Informationen findet man in der obigen Formatbeschreibung. Die
grundlegenden Optionen sind hier color und single. Mit isochrone_log_age kann man
angeben, ob die Werte in der Altersspalte logarithmiert sind oder nicht. Man kann zwischen True und
False wählen. Wenn sich die Isochronen alle in einer Datei befinden, benötigt das Skript ein
Schlüsselwort, um zu erkennen, wann eine Isochrone endet und die nächste beginnt. Dies kann mit
der Variablen isochrone_keyword angegeben werden. Schließlich kann man entscheiden, ob eine
Legende für die Isochronen gezeichnet werden soll. Dies wird durch die Variable isochrone_legend
gesteuert.

Tip: Zumeist gibt es Isochronen aus einer Quelle in unterschiedlichen zeitlichen Auflösungen und für
unterschiedliche Metallizitäten. Diese finden sich dann in der Regel in anderen Dateien bzw. Ordnern,
je nachdem was für isochrone_type gesetzt werden muss. Es kann sich also lohnen, in der
Datenbank nachzuschauen und den Eintrag für isochrones anzupassen.

Hinweis: Ein paar zusätzliche Informationen zu den einzelnen Variablen findet sich noch im YAML-
Template.

Protokoll

Es ist ein übliches Protokoll einzureichen. Eine allgemeine Übersicht über den erforderlichen Aufbau
und Inhalt findet man hier.

Für diesen Versuch sollte im theoretischen Teil des Protokolls ein Überblick über offene und
kugelförmige Sternhaufen mit Schwerpunkt auf dem beobachteten Typ und dessen Abgrenzung zu
anderen Ansammlungen und Gruppen von Sternen beschreiben werden. Erläutern Sie was ein
Hertzsprung-Russell-Diagramme (HRD) und was ein Farb-Helligkeits-Diagramme (FHD) ist und wie
sich diese beiden Typen unterscheiden. Legen Sie des Weiteren Kurz die Entwicklung von Sternen
unterschiedlicher Masse im Rahmen eines HRD da und erläutern Sie die Konzepte der Isochronen und
des Abknickpunktes und wie man damit das Alter eines Sternhaufens schätzt.

Beschreiben Sie im Methodenteil die Beobachtungen und die Datenreduktion, heben Sie Punkte
hervor, die von der allgemeinen Beschreibung hier abweichen, und führen Sie alle Parameter auf, die
Sie für die Extraktion gesetzt haben. Fügen Sie außerdem alle Diagramme der Datenreduktion in den
Bericht ein (einige wenige im Text, die meisten im Anhang). Geben Sie auch alle Parameter für
Rötung, Extinktion und Entfernung an, die Sie aus der Literatur übernommen haben.

Im Ergebnisteil werden die CMDs des Sternhaufens dargestellt und die darin beobachtbaren Merkmale
beschrieben.

Die Analyse der CMDs enthält die Schätzung des Haufenalters auf der Grundlage des Abbiegepunkts
und einer Isochronenanpassung.

Diskutieren Sie schließlich Ihre Ergebnisse. Stellen Sie Ihre Ergebnisse in einen größeren
Zusammenhang und nehmen Sie, wenn möglich, einen Literaturvergleich vor (z. B. für das Alter des

https://polaris.astro.physik.uni-potsdam.de/wiki/doku.php?id=de:praktikum:protocol

2026/01/17 15:57 21/21 N2 - Photometrie eines offenen Sternhaufens

OST Wiki - https://141.89.178.218/wiki/

Haufens). Dazu gehört auch, dass Sie mögliche Probleme mit den Daten, der Datenreduktion oder der
Analyse (insbesondere der Isochronenanpassung) und mögliche Lösungen dafür aufzeigen. Gibt es
Ungereimtheiten? Sehen Sie spezifische und offensichtliche Merkmale in der CMD, die Sie nicht
erklären können, die nicht Ihren Erwartungen entsprechen?

Hinweis: Aufgrund der Plots und Bilder passt das Protokoll möglicherweise nicht in einen E-Mail-
Anhang. Sie können Ihr Protokoll auf das Universitäts-Cloud-System (BoxUP) hochladen oder alternativ
auf den Auswerterecher des Praktikums ablegen und uns den Pfad schicken.

Übersicht: Praktikum

From:
https://141.89.178.218/wiki/ - OST Wiki

Permanent link:
https://141.89.178.218/wiki/doku.php?id=de:praktikum:photometrie_python

Last update: 2025/07/31 10:09

https://boxup.uni-potsdam.de/index.php/login
https://141.89.178.218/wiki/doku.php?id=de:praktikum:index
https://141.89.178.218/wiki/
https://141.89.178.218/wiki/doku.php?id=de:praktikum:photometrie_python

	N2 - Photometrie eines offenen Sternhaufens
	Aufgabe
	Beobachtung
	Datenreduktion
	Vorbereitungen
	Überblick verschaffen - Bilder ansehen
	Pipeline installieren

	Reduktions-Pipeline: Darkframes, Flatfields und Bildstacking

	Datenauswertung mit Python
	Definieren einiger Variablen
	Einlesen der Bilder
	World Coordinate System
	Identifikation der Sterne
	Finden der Sterne
	Gefundenen Sterne prüfen
	Aufbereiten der Extraktionsergebnisse
	Kreuzkorrelation und Sortierung der Ergebnisse
	Umrechnung der Flüsse in Magnituden

	Kalibrierung
	Download Kalirationsdaten
	Kreuzkorrelation mit den extrahierten Daten
	Magnitudenkalibrierung
	Speichern der Ergebnisse

	Nachbearbeitung
	FHDs
	Scheinbares FHD plotten
	Rötung & absolute Magnituden
	Absolutes FHD plotten
	Isochronen plotten

	Protokoll

